Рассказы про научные открытия

За последние несколько веков мы совершили бесчисленное множество открытий, которые помогли значительно улучшить качество нашей повседневной жизни и понять, как устроен мир вокруг нас. Оценить всю важность этих открытий очень сложно, если не сказать, что почти невозможно. Но одно ясно наверняка – некоторые из них буквально изменили нашу жизнь раз и навсегда. От пенициллина и винтового насоса до рентгена и электричества, перед вами список из 25 величайших открытий и изобретений человечества.

25. Пенициллин

Топ-25: величайшие научные открытия в истории человечества

Фото: wikipedia

Если бы в 1928 году шотландский ученый Александр Флеминг (Alexander Fleming) не открыл пенициллин, первый антибиотик, мы до сих пор бы умирали от таких болезней, как язва желудка, от абсцессов, стрептококковых инфекций, скарлатины, лептоспироза, болезни Лайма и многих других.

24. Механические часы

Топ-25: величайшие научные открытия в истории человечества

Фото: pixabay

Существуют противоречивые теории о том, как же на самом деле выглядели первые механические часы, но чаще всего исследователи придерживаются версии, что в 723 году нашей эры их создал китайский монах и математик Ай Ксинг (I-Hsing). Именно это основополагающее изобретение позволило нам измерять время.

23. Гелиоцентризм Коперника

Топ-25: величайшие научные открытия в истории человечества

Фото: WP / wikimedia

В 1543 году практически на смертном одре польский астроном Николай Коперник обнародовал свою знаменательную теорию. Согласно трудам Коперника стало известно, что Солнце – центр нашей планетной системы, а все ее планеты вращаются вокруг нашей звезды каждая по своей орбите. До 1543 года астрономы полагали, что именно Земля была центром Вселенной.

22. Кровообращение

Топ-25: величайшие научные открытия в истории человечества

Фото: Bryan Brandenburg

Одним из самых важных открытий в медицине стало открытие системы кровообращения, о чем в 1628 году объявил английский врач Вильям Харви (William Harvey). Он стал первым человеком, описавшим всю систему циркуляции и свойства крови, которую сердце качает по всему нашему телу от мозга до кончиков пальцев.

21. Винтовой насос

Топ-25: величайшие научные открытия в истории человечества

Фото: David Hawgood / geographic.org.uk

Один из известнейших древнегреческих ученых, Архимед, считается автором одного из первых в мире водяных насосов. Его устройство представляло собой вращающийся штопор, который проталкивал воду вверх по трубе. Это изобретение продвинуло ирригационные системы на новый уровень и до сих пор используется на многих заводах по очистке сточных вод.

20. Гравитация

Топ-25: величайшие научные открытия в истории человечества

Фото: wikimedia

Все знают эту историю – Исаак Ньютон, знаменитый английский математик и физик, открыл гравитацию после того, как в 1664 году ему на голову упало яблоко. Благодаря этому событию мы впервые узнали, почему предметы падают вниз, и почему планеты вращаются вокруг Солнца.

19. Пастеризация

Топ-25: величайшие научные открытия в истории человечества

Фото: wikimedia

Пастеризация была открыта в 1860-х годах французским ученым Луи Пастером (Louis Pasteur). Она представляет собой процесс термической обработки, во время которой в определенных продуктах питания и напитках (вино, молоко, пиво) происходит разрушение патогенных микроорганизмов. Это открытие возымело значительное влияние на общественное здравоохранение и развитие пищевой промышленности во всем мире.

18. Паровой двигатель

Топ-25: величайшие научные открытия в истории человечества

Фото: pixabay

Всем известно, что современная цивилизация ковалась на заводах, построенных во время промышленной революции, и что все это происходило с использованием паровых двигателей. Двигатель, приводимый в действие силой пара, был создан давно, но за последнее столетие он был существенно доработан тремя британскими изобретателями: Томасом Сэйвери, Томасом Ньюкаменом и самым знаменитым из них – Джеймсом Ваттом (Thomas Savery, Thomas Newcomen, James Watt).

17. Кондиционер

Топ-25: величайшие научные открытия в истории человечества

Фото: Ildar Sagdejev / wikimedia

Примитивная система климат-контроля существовала с древних времен, но она существенно изменилась, когда в 1902 году появился первый современный электрический кондиционер. Его изобрел молодой инженер по имени Виллис Карриер (Willis Carrier), выходец из Баффало, штат Нью-Йорк (Buffalo, New York).

16. Электричество

Топ-25: величайшие научные открытия в истории человечества

Фото: pixabay

Судьбоносное открытие электричества причисляется английскому ученому Майклу Фарадею (Michael Faraday). Среди его ключевых открытий стоит отметить принципы действия электромагнитной индукции, диамагнетизм и электролиз. Эксперименты Фарадея также привели к созданию первого генератора, ставшего предшественником огромных генераторов, которые сегодня производят привычное нам в повседневной жизни электричество.

15. ДНК

Топ-25: величайшие научные открытия в истории человечества

Фото: pixabay

Многие считают, что именно американский биолог Джеймс Ватсон и английский физик Фрэнсис Крик (James Watson, Francis Crick) в 1950-х годах открыли ДНК, но на самом деле впервые эта макромолекула была выявлена еще в конце 1860-х годов швейцарским химиком Фридрихом Майшером (Friedrich Miescher). Затем спустя несколько десятилетий после открытия Майшера уже другие ученые провели ряд исследований, которые наконец-то помогли нам прояснить, как организм передает свои гены следующему поколению, и как координируется работа его клеток.

14. Анестезия

Топ-25: величайшие научные открытия в истории человечества

Фото: Wikimedia

Простые формы анестезии, такие как опиум, мандрагора и алкоголь, использовались людьми издавна, и первые упоминания о них ссылаются аж на 70 год нашей эры. Но с 1847 года обезболивание перешло на новый уровень, когда американский хирург Генри Бигелоу (Henry Bigelow) впервые ввел в свою практику эфир и хлороформ, сделав крайне болезненные инвазивные процедуры намного более переносимыми.

13. Теория относительности

Топ-25: величайшие научные открытия в истории человечества

Фото: Wikimedia

Включая две взаимосвязанные теории Альберта Эйнштейна (Albert Einstein), специальную и общую теорию относительности, теория относительности, опубликованная в 1905 году, преобразовала всю теоретическую физику и астрономию 20 века и затмила 200-летнюю теорию механики, предложенную Ньютоном. Теория относительности Эйнштейна стала основой для большей части научных работ современности.

12. Рентгеновские лучи

Топ-25: величайшие научные открытия в истории человечества

Фото: Nevit Dilmen / wikimedia

Немецкий физик Вильгельм Конрад Рентген (Wilhelm Conrad Rontgen) нечаянно открыл рентгеновские лучи в 1895 году, когда он наблюдал за флюоресценцией, возникающей при работе катодно-лучевой трубки. За это поворотное открытие в 1901 году ученый был удостоен Нобелевской премии, ставшей первой в своем роде в области физических наук.

11. Телеграф

Топ-25: величайшие научные открытия в истории человечества

Фото: wikipedia

С 1753 года многие исследователи проводили свои эксперименты для установления связи на расстоянии с помощью электричества, но значительный прорыв произошел лишь спустя несколько десятилетий, когда в 1835 году Джозеф Генри и Эдвард Дэйви (Joseph Henry, Edward Davy) изобрели электрическое реле. С помощью этого устройства они и создали первый телеграф 2 года спустя.

10. Периодическая система химических элементов

Топ-25: величайшие научные открытия в истории человечества

Фото: sandbh / wikimedia

В 1869 году русский химик Дмитрий Менделеев заметил, что если упорядочить химические элементы по их атомной массе, они условно выстраиваются в группы с похожими свойствами. На основании этой информации он создал первую периодическую систему, одно из величайших открытий в химии, которое позже прозвали в его честь таблицей Менделеева.

9. Инфракрасные лучи

Топ-25: величайшие научные открытия в истории человечества

Фото: AIRS / flickr

Инфракрасное излучение было открыто британским астрономом Вильямом Хершелем (William Herschel) в 1800 году, когда он изучал нагревательный эффект света разных цветов, используя для разложения света в спектр призму, и измеряя изменения термометрами. Сегодня инфракрасное излучение используется во многих областях нашей жизни, включая метеорологию, системы подогрева, астрономию, отслеживание теплоемких объектов и многие другие сферы.

8. Ядерный магнитный резонанс

Топ-25: величайшие научные открытия в истории человечества

Фото: Mj-bird / wikimedia

Сегодня ядерный магнитный резонанс постоянно используют в качестве чрезвычайно точного и эффективного диагностического инструмента в области медицины. Впервые это явление было описано и вычислено американским физиком Исидором Раби (Isidor Rabi) в 1938 году во время наблюдения за молекулярными пучками. В 1944 году за это открытие американскому ученому вручили Нобелевскую премию по физике.

7. Отвальный плуг

Топ-25: величайшие научные открытия в истории человечества

Фото: wikimedia

Изобретенный в 18-ом столетии, отвальный плуг стал первым плугом, который не только вскапывал почву, но и размешивал ее, что позволило обрабатывать в сельскохозяйственных целях даже очень неподатливую и каменистую землю. Без этого орудия сельское хозяйство, каким мы знаем его сегодня, в северной Европе или в центральной Америке не существовало бы.

6. Камера-обскура

Топ-25: величайшие научные открытия в истории человечества

Фото: wikimedia

Предшественником современных фотоаппаратов и видеокамер стала камера-обскура (в переводе темная комната), которая была оптическим устройством, используемым художниками для создания быстрых набросков во время выездов за пределы своих мастерских. Отверстие в одной из стенок устройства служило для создания перевернутого изображения того, что происходило снаружи камеры. Картинка отображалась на экране (на противоположной от отверстия стенке темного ящика). Эти принципы были известны веками, но в 1568 году венецианец Даниель Барбаро (Daniel Barbaro) внес изменения в устройство камеры-обскура, дополнив его собирающими линзами.

5. Бумага

Топ-25: величайшие научные открытия в истории человечества

Фото: pixabay

Первыми примерами современной бумаги часто считают папирус и амате, которые использовали древние средиземноморские народы и доколумбовые американцы. Но было бы не совсем верно считать их настоящей бумагой. Ссылки на первое производство писчей бумаги относятся к Китаю во времена правления империи Восточная Хань (25-220 годы нашей эры). Первая бумага упоминается в летописях, посвященных деятельности судебного сановника Цай Луна (Cai Lun).

4. Тефлон

Топ-25: величайшие научные открытия в истории человечества

Фото: pixabay

Материал, благодаря которому ваша сковорода не пригорает, на самом деле был изобретен абсолютно случайно американским химиком Роем Планкетт (Roy Plunkett), когда тот искал замену холодильным агентам, чтобы обезопасить домашний быт. Во время одного из своих экспериментов ученый открыл странную скользкую смолу, которая позже стала больше известной как тефлон.

3. Теория эволюции и естественного отбора

Топ-25: величайшие научные открытия в истории человечества

Фото: wikimedia

Вдохновленный своими наблюдениями в ходе второго исследовательского путешествия в 1831-1836 годах, Чарльз Дарвин (Charles Darwin) приступил к написанию своей знаменитой теории эволюции и естественного отбора, ставшей по мнению ученых со всего света ключевым описанием механизма развития всего живого на Земле

2. Жидкие кристаллы

Топ-25: величайшие научные открытия в истории человечества

Фото: William Hook / flickr

Если бы австрийский ботаник и физиолог Фридрих Райницер (Friedrich Reinitzer) не открыл жидкие кристаллы во время проверки физико-химических свойств различных производных холестерина в 1888 году, сегодня вы бы не знали, что такое телевизоры с жидкокристаллическими экранами или плоские LCD мониторы.

1. Вакцина от полиомиелита

Топ-25: величайшие научные открытия в истории человечества

Фото: GDC Global / flickr

26 марта 1953 года американский медицинский исследователь Йонас Солк (Jonas Salk) объявил, что ему удалось провести успешные испытания вакцины против полиомиелита, вируса, который вызывает тяжелое хроническое заболевание. В 1952 году из-за эпидемии этого недуга диагноз был поставлен 58 000 жителей США, и болезнь унесла 3 000 невинных жизней. Это подстегнуло Солка на поиски спасения, и теперь цивилизованный мир в безопасности хотя бы от этой беды.

Перепечатка статей разрешена только при наличии активной индексируемой ссылки на BUGAGA.RU

В России 2021-й объявили Годом науки и технологий. РБК Тренды подготовили хронологию открытий, которые оказали важнейшее влияние на жизнь человечества. Ко многим из них приложили руку и российские ученые

2 июля 1698 года — английский механик Томас Севери патентует первый паровой двигатель. Сама по себе «машина Севери» представляла собой обычный паровой насос без деталей, приводимых в движение. Однако эта разработка позволила последователям Севери внедрить в механические устройства реальные паровые двигатели.

Первый прототип паровоза был сконструирован во Франции военным инженером Николя-Жозе Кюньо уже в 1769 году. Железнодорожные составы, первые автомобили, корабли, станки на заводах и фабриках, моторизированная сельхозтехника — все это работало на пару. Именно разработка парового двигателя дала старт промышленной революции XVIII—XIX веков.

Паровая машина Кюньо

Паровая машина Кюньо

(Фото: kvantorium.su)

7 января 1839 года — физик Франсуа Араго представляет доклад о дагеротипии на заседании Французской академии наук. Эту дату принято считать днем рождения фотографии. А изобретателем метода был коллега Араго, химик Луи Жак Манде Дагер, который назвал его в свою честь. Он продемонстрировал членам академии снимок «Вид на бульвар дю Тампль» на йодисто-серебряной пластине. Метод дагеротипии заключался в проецировании камерой-обскура изображения на посеребренную медную пластину, которую предварительно обработали йодом. Серебро под действием паров йода стало светочувствительным за счет галогенидов — соединений, реагирующих на свет. В итоге получилось изображение, напоминающее гравюру.

«Вид на бульвар дю Тампль»

«Вид на бульвар дю Тампль»

(Фото: wikipedia.org)

Фотография в наше время стала цифровой, мгновенной и тиражируемой. Она позволяет не только фиксировать события из жизни, но и широко применяется в науке. Алгоритмы искусственного интеллекта обучают на массивах снимков, их же мы получаем из космоса при отправке очередного исследовательского аппарата. Фотография стала одним из способов обмена информацией наряду с текстом.

7 марта 1876 года — изобретатель шотландского происхождения Александр Белл получает патент на изобретение телефона. К тому моменту разработка устройства велась не один год, а занимались ею одновременно несколько исследователей в разных странах.

Актер в роли Белла с первым телефоном

Актер в роли Белла с первым телефоном

(Фото: earlyofficemuseum.com)

Свою лепту в разработку телефона вложил и Томас Эдисон. Вместо стержня он предложил использовать в микрофонах угольный порошок.

Первые телефоны были напрямую связаны друг с другом, но в систему быстро внедрили ручные распределительные щиты. На устройствах не было набора номера, а присутствовал рычаг, который нужно было потянуть, чтобы вызвать оператора.

Российский военный связист Григорий Игнатьев 29 марта 1880 года первым разработал систему одновременного телеграфирования и телефонирования с разделением частот. Это позволило создавать протяженные телефонные сети.

Сегодня телефония эволюционировала и включает не только проводной способ связи, но и сотовый, спутниковый, а также связь по IP.

Фото:Rita Vicari / Unsplash, Andrea Piacquadio / Pexels

21 октября 1879 года — американский изобретатель-самоучка Томас Эдисон испытал электрическую лампу накаливания. Над ней годами работали ученые из разных стран. К примеру, в 1874 году российский инженер Александр Лодыгин запатентовал самую на тот момент жизнеспособную версию с угольным стержнем, который не плавился. Чуть позже он предложил заменить угольный стержень вольфрамовым, который используется по сей день. Однако именно Эдисон ввел лампочки в массовое использование.

Томас Эдисон с лампочкой

Томас Эдисон с лампочкой

(Фото: Hulton Archive / Getty Images)

Устройства заменили тусклые керосиновые лампы и газовые горелки в домах и на производствах. Это позволило коренным образом изменить процесс работы на предприятиях и даже режим дня. Кроме того, на улицах стало светлее — а, значит, безопаснее.

Лампочки Эдисона не имели конкурентов почти столетие, вплоть до 1976 года, когда изобретатель Эд Хаммер представил компании General Electric новый тип энергосберегающей лампы.

29 января 1886 года — немецкий инженер Карл Бенц получает патент на первый в мире автомобиль с двигателем внутреннего сгорания. Он представлял собой трехколесный двухместный экипаж на высоких колесах со спицами. Автомобиль был оснащен бензиновым мотором с водяным охлаждением мощностью всего 0,9 л. с.

Первый самостоятельный автопробег совершила жена Бенца Берта, которая с детьми проехала более 100 км, чтобы навестить мать. При этом машину приходилось толкать в гору, после чего Бенц задумался, чтобы спроектировать коробку передач.

Ролик Mercedes-Benz о поездке Берты Бенц

Популяризатором автомобилей по праву называют Генри Форда. Именно он поставил производство на поток и снизил себестоимость машин.

Автомобили сделали людей мобильными. Мы начали строить трассы, развивать транспортные сети, заселять новые территории. В наше время человечество стремится к тому, чтобы освободить себя от управления автомобилем и передать его ИИ. Это небыстрый процесс, но вероятность появления на дорогах беспилотников в ближайшие годы велика.

1 мая 1888 года — изобретатель сербского происхождения Никола Тесла получает патент на асинхронный электродвигатель и системы передачи электроэнергии посредством многофазного переменного тока. О переменном токе тогда уже знали многие, а первый прототип электродвигателя представил еще британский физик Майкл Фарадей в 1821 году.

Двигатель Теслы

Двигатель Теслы

(Фото: wikipedia.org)

Патент Теслы перекупил американский бизнесмен Георг Вестингауз и запустил массовое производство двигателей. Благодаря этому в США удалось запустить целый ряд промышленных электроустановок, в том числе Ниагарскую ГЭС в 1895 году.

Позднее разработку Теслы усовершенствовал российский инженер Михиал Доливо-Добровольский. Он сконструировал трехфазный асинхронный двигатель с ротором, который напоминает беличье колесо. Эта конструкция и лежит в основе современных двигателей.

Устройство трехфазных асинхронных двигателей

Сегодня двигатели — это основные преобразователи электрической энергии в механическую. Они используются на производстве и в бытовой технике — от приводов задвижек до вращения барабана в стиральной машине. Именно эти двигатели устанавливают в электромобили, о чем намекает название компании Илона Маска Tesla.

7 мая 1895 года — российский физик Александр Попов проводит первый сеанс радиосвязи с помощью созданного им радиоприемника. Он обнаруживал излучение электромагнитных волн на расстоянии до 60 м от передатчика. В качестве антенны Попов использовал проволоку, поднятую воздушными шарами на высоту 2,5 метра. Исследователь смог передать набранные азбукой Морзе слова Heinrich Hertz (Генрих Герц) с передатчика на приемник собственной конструкции.

Попов проводит первый сеанс радиосвязи

Попов проводит первый сеанс радиосвязи

(Фото: etu.ru)

Насчет появления радио мнения расходятся. В США его изобретателем считают Дэвида Хьюза, Томаса Эдисона и Николу Теслу. В Германии — Генриха Герца, который первым открыл электромагнитные волны. Многие европейские страны признают изобретателем радио итальянца Гульельмо Маркони, который на месяц опередил Попова. Официально Маркони представил свой аппарат 2 сентября 1895 года и передал с помощью него целый текст на расстояние 3 км.

В 1940-х годах суд признал приоритет изобретения Теслы над аппаратами Маркони и Попова, так как оно могло преобразовывать радиосигнал в звук.

Несмотря на большое количество споров о первенстве, все эти попытки передачи физического сигнала подтолкнули развитие будущих технологий связи. В наше время радио существует не только в его традиционном представлении, но и в виде продолжений: телевидения, мобильной связи, Wi-Fi.

22 декабря 1895 года — немецкий физик Вильгельм Рёнтген делает первый в мире рентгеновский снимок человеческой руки. Незадолго до этого, 8 ноября, ученый открыл Х-лучи, которые способны проникать сквозь различные материалы. За свое открытие Рентген удостоился первой Нобелевской премии по физике в 1901 году.

Снимок руки супруги Рёнтгена

Снимок руки супруги Рёнтгена

(Фото: artsandculture.google.com)

В настоящее время рентген — это важный способ диагностики в медицине. Кроме того, рентгеновские лучи широко используются в производстве: для обнаружения внутренних дефектов деталей и определения атомной структуры веществ, а также их химического состава. Они нашли применение и в системах безопасности, чтобы, к примеру, просвечивать багаж.

17 декабря 1903 года — братья Уилбер и Орвилл Райт из США проводят первый испытательный полет своего самолета «Флайер-1». Летательный аппарат пробыл в воздухе 12 секунд, преодолев 36,5 м. «Флайер-1» представлял собой биплан с двумя рулями, в котором пилот размещался на нижнем крыле. Его винты были деревянными, а роль шасси выполняла катапульта. Двигатель имел мощность всего 16 л.с.

Кстати, тогда этот полет прошел практически незаметно для общественности. Люди просто не верили, что будут способны покорить небо.

В наши дни самолеты стали обычным видом транспорта. Благодаря развитию авиации теперь можно добраться практически в любую точку Земли. Кроме того, это важный элемент системы доставки грузов. Именно покорение неба зародило еще более амбициозную мечту — полететь в космос.

28 сентября 1928 года — британский микробиолог Александр Флеминг изобретает пенициллин, который произвел революцию в медицине и по сей день считается главным антибиотиком. Все началось с того, что Флеминг заметил на пластине с изучаемыми им стафилококками плесневые грибы, которые взялись неизвестно откуда и уничтожили часть бактерий. Он отнес эти грибы к роду пеницилловых.

Флеминг в своей лаборатории

Флеминг в своей лаборатории

(Фото: globallookpress.com)

В 1941 году удалось произвести эффективную дозу пенициллина, которая спасла жизнь 15-летнему подростку с заражением крови. Антибиотик позволил лечить остеомиелит и пневмонию, сифилис и родильную горячку, предотвратить развитие инфекций, а также бороться с туберкулезом. Ранее смертельные болезни перестали считаться таковыми, что повлияло и на глобальную продолжительность жизни.

15 февраля 1946 года — широкой публике представили ENIAC, первый известный компьютер. Его сконструировали ученые Джон Преспер Эккерт и Джон Уильям Мокли в университете Пенсильвании для вычисления баллистики снарядов для американских военных во время Второй мировой войны. Первый компьютер весил 30 тонн и занимал площадь в 200 кв. м, зато мог рассчитать траекторию ракеты за 30 секунд.

ENIAC

ENIAC

(Фото: U.S. Army Research Laboratory)

Уже в 1975 году на рынок выходит первый пользовательский ПК «Альтаир 8800» компании MITS, а в 1983 году эстафету перехватывает компактный Apple Macintosh. В 1990-е годы ПК становятся доступными практически всем.

Сейчас, в эпоху интернета, мы не представляем свою жизнь без компьютеров. Они делают жизнь удобнее, а еще играют центральную роль в автоматизации многих процессов и в развитии производств. Новый этап — это разработка квантовых компьютеров, которые обладают огромной вычислительной мощностью. Такие устройства гипотетически смогут решать кардинально новые задачи: к примеру, вычислить, есть ли во Вселенной разумные существа.

26 апреля 1951 года — американский физик Чарльз Таунс рисует набросок первого мазера — прибора, усиливающего микроволновые колебания с помощью вынужденного излучения. Так идея лазера, которую описывал еще Эйнштейн, начинает воплощаться в реальность.

Первый мазер излучал с длиной волны около 1 см и генерировал мощность около 10 нВт. Большой вклад в развитие технологии внесли российские ученые Николай Басов и Александр Прохоров, которые предложили трехуровневый метод накачки мазера. Эта работа легла в основу квантовой электроники, которая стала новым направлением в физике. В 1964 году Басов, Прохоров и Таунс получили Нобелевскую премию по физике.

Академик Николай Басов у лазерной термоядерной установки «Дельфин-1», 1981 год

Академик Николай Басов у лазерной термоядерной установки «Дельфин-1», 1981 год

(Фото: Олег Кузьмин / ТАСС)

В 1960 году создается первый твердотельный лазер на кристалле рубина. Устройства такого типа применялись в CD-проигрывателях и DVD-плеерах.

Сегодня выпускаются лазеры различных типов, которые широко применяются в науке, технике, на производстве и даже в медицине. Их используют при сварке, пайке и даже в микроэлектронике. Мазеры же считаются «атомными стандартами частоты» и являются одной из форм атомных часов, применяемых в космонавтике. Они используются как микроволновые усилители с низким уровнем шума в радиотелескопах.

15 июня 1956 года — на семинаре Дартмутского колледжа в США впервые предложили термин «искусственный интеллект». До этого, в 1951 году, уже был продемонстрирован нейрокомпьютер, который содержал 40 нейронов. Это был важный переход от идеи Тьюринга о машине, которая может реагировать на сигналы человека, к идее системы, которая самостоятельно принимает решения.

Сегодня область исследований и применения ИИ чрезвычайно широка: это и генетические алгоритмы, и когнитивное моделирование, и интеллектуальные интерфейсы, а также наиболее широко используемые распознавание и синтез речи.

Компьютер AlphaGo играет в одноименную китайскую игру

13 июня 1961 года — американскому изобретателю Джорджу Деволу выдали патент на первого в истории промышленного робота. Механизированный манипулятор Unimate занял свое место на предприятии General Motors. Он забирал детали с линии непрерывного литья и устанавливал их внутрь автомобильных кузовов методом сварки. Внешне Unimate напоминал подвижную «руку» с захватом-клещами.

Робот Unimate на строительных работах в штате Коннектикут

Появление промышленных роботов ознаменовало новый этап технической революции. В наши дни роботов широко используют не только для выполнения рутинных задач на предприятиях, но даже запускают в космос. «Персеверанс», который исследует Марс — это тоже робот, снабженный захватом и множеством датчиков и камер.

3 апреля 1973 года — глава подразделения мобильной связи Motorola Мартин Купер впервые дозвонился до абонента с сотового телефона. Протомобильник весил почти 1 кг и был 25 см в длину.

Однако первый коммерческий сотовый телефон появился на рынке только 6 марта 1983 года, когда Motorola представила DynaTAC 8000Х. «Мобильник» был немного компактнее, он весил 794 г, зато стоил $3,5 тыс. — намного дороже новенького iPhone. Несмотря на это, отбоя от желающих купить новинку не было — в очередь записывались тысячи жителей США.

Мартин Купер звонит по первому мобильному

Мартин Купер звонит по первому мобильному

(Фото: everything47.com)

Мобильная связь дала нам возможность моментально обмениваться информацией из любой точки мира. Данные стали распространяться быстрее, а прогресс в целом сильно ускорился. Устройства стали меньше, мощнее и функциональнее. Теперь у нас есть не только мобильные телефоны, но и их производные: планшеты, «читалки», «умные» браслеты. Благодаря развитию сетей связи получить огромный набор услуг теперь можно из любой точки мира.

9 марта 1983 года — устройство, над которым работал американский инженер Чарльз Хал, смогло произвести 3D-печать чаши. Первый 3D-принтер был довольно габаритной промышленной установкой. Он создавал трехмерный объект путем нанесения фотополимеризующегося материала на подвижную платформу по макету.

Первый 3D-принтер Хала

Первый 3D-принтер Хала

(Фото: sculpteo.com)

Первый серийный 3D-принтер SLA-1 был выпущен в 1987 году. Изначально его предполагалось использовать в автомобилестроении. Но в наши дни 3D-печать применяется буквально везде. В Европе в 2020 году 3D-принтер создал первый дом. А частная космическая компания Relatively Space поставила целью полностью напечатать на принтере ракету, и активно движется в этом направлении.

6 августа 1991 года — британский ученый Тим Бернерс-Ли размещает в интернете первый сайт с основной информацией о его технологии WWW и о том, как просматривать документы и скачивать браузер. Этот день дал старт развитию пользовательского интернета.

Первый сайт

Первый сайт

(Фото: CERN)

Разработка Всемирной паутины велась десятилетиями. Еще в 1973 году американский ученый в области теории вычислительных систем Винтон Серф при поддержке Агентства перспективных исследований Минобороны США представил компьютерную сеть, работающую на протоколе передачи информации TCP/IP. А проект ARPANET, который предшествовал появлению интернета, разрабатывали с 1964 года.

Роль, которую играет интернет в нашей жизни переоценить невозможно. Пожалуй, это величайшее открытие XX века. Кстати, Винт Серф продолжает работать, но уже над проектом космического интернета. Сейчас его команда ведет испытания нового протокола передачи данных, который потенциально мог бы обеспечить связь в космосе.

На чтение 11 мин. Просмотров 39.1k. Опубликовано 21 мая, 2020

Современная цивилизация не существовала бы без технологий и научных изобретений. Многие из них меняли представления о мире или жизнь людей. Сейчас очевидно, что руки после улицы нужно мыть; если бросить вверх камень с достаточной скоростью, он выйдет на орбиту Земли, а мыши не самозарождаются в соломе. Но это было известно (и доступно) не всегда. Представляем 10 открытий, изменивших мир.

Содержание

  1. ТОП 10: величайшие научные открытия, изменившие мир
  2. Гелиоцентрическая система мира
  3. Клеточное строение живых организмов и микроскопия
  4. Закон всемирного тяготения и законы классической механики
  5. Электричество
  6. Генетика
  7. Теория эволюции
  8. Радиоактивность
  9. Теория относительности
  10. Антибиотики
  11. ДНК
  12. Научные открытия — FAQ

ТОП 10: величайшие научные открытия, изменившие мир

Выбрать только 10 открытий из всех сложно. Пришлось отказаться от наследия античности и от некоторых областей наук: с ними текст получился бы огромным. Многие величайшие достижения человечества, например: волновая теория света, закон сохранения энергии, структура генетического кода — остались не рассмотренными по этой же причине. Поэтому рассмотрим те научные открытия, без которых не было бы современной науки и цивилизации.

Наука, которая изменила мир

Гелиоцентрическая система мира

Земля вращается вокруг Солнца с периодом вращения один год. На этом основана современная астрономия. Однако со 2 до конца 17 века геоцентризм — идея о том, что Солнце, звезды и планеты вращаются вокруг Земли — был популярнее. Так утверждали труды Аристотеля и Птолемея, а также Библия. Мало кто из философов и ученых решался спорить с ними.

Николай Коперник: ТОП 10 научных открытий

Николай Коперник (1473-1543), возродивший концепцию гелиоцентризма

В 1543 году польский астроном Николай Коперник опубликовал книгу «О движении небесных сфер». В ней он утверждал, что Земля и другие планеты вращаются вокруг Солнца, а Земля, кроме того — и вокруг своей оси. Эти дату и книгу считают моментом возрождения гелиоцентризма.

Гелиоцентризм: ТОП 10 научных открытий

Концепция гелиоцентризма

Теория о гелиоцентризме была доказана только после открытия законов классической механики. До этого ее развивали Иоганн Кеплер, Галилео Галилей и другие астрономы и физики.

Клеточное строение живых организмов и микроскопия

«Все живые организмы состоят из клеток. Клетка – структурная и функциональная единица живого». Без этих знаний биология и медицина оставались бы на уровне 15 века. Клеточную теорию строения живого разработали благодаря исследованиям Роберта Гука и Антони ван Левенгука.

Роберт Гук: величайшие научные достижения

Роберт Гук (1635-1703)

Антони ван Левенгук

Антони ван Левенгук (1632-1723)

Англичанин Роберт Гук в 1665 году опубликовал книгу «Микрография». Помимо астрономических наблюдений в ней были рисунки срезов пробки с упорядоченными пустотами. Гук назвал их клетками, и термин прижился.

Клетка: ТОП 10 научных открытий

Клетка в микроскопии

Страстью Антони ван Левенгука, работника торговой лавки, была микроскопия. Левенгук научился шлифовать линзы и собирать их в стопки, чтобы усилить увеличение. Прочитав книгу Гука, Левенгук начал рассматривать в самодельный микроскоп все подряд. Именно Левенгук первым открыл одноклеточные организмы, бактерии, эритроциты (клетки крови), мышечные волокна.

Закон всемирного тяготения и законы классической механики

Классическая, или ньютоновская механика, благодаря которой существуют современные механизмы, немыслима без законов Ньютона. В 1687 году Исаак Ньютон издал книгу «Математические начала натуральной философии». В ней английский ученый описал три закона движения и закон всемирного тяготения, определил основные физические термины, в том числе, массу и силу, изложил результаты своих исследований в области гидродинамики и астрономии.

Научные открытия мира: 10 величайших открытий

Книга «Математические начала натуральной философии»

В 1905 году Альберт Эйнштейн усовершенствовал теорию Ньютона, разработав общую теорию относительности. О ней речь пойдет ниже.

Электричество

Научные открытия 20 века и современное общество не могли бы существовать без электричества. Датировать эту технологию сложно. О положительном и отрицательном электрических зарядах писал Шарль Дюфе в 1734 году. В 1800 году Алессандро Вольта изобрел источник постоянного тока – первую батарейку. Двумя годами позже Василий Петров открыл вольтову дугу, и с этого момента исследователи разных стран искали способы использовать электричество для освещения.

Лампочка: ТОП 10 научных изобретений

Лампочка испускает свет за счет теплового действия тока

В 1831 году Майкл Фарадей описал электромагнитную индукцию и создал первый электрогенератор, а затем – электродвигатель. Электромагнитные волны впервые зарегистрировал Генрих Герц. В 1897 году Джозеф Топмсон открыл электрон. Их движение и есть электрический ток.

Генетика

Генетика – это наука о наследственности и изменчивости. Она объясняет, почему и как получаются новые породы животных и сорта растений; что будет, если добавить помидору гены лосося, будет ли такой помидор плавать лучше обычного (не будет) и как заставить бактерии вырабатывать инсулин – лекарство, необходимое диабетикам.

Грегор Мендель: научные достижения мира

Грегор Мендель (1822-1884)

Основы генетики заложил Грегор Мендель, монах-августинец, живший в Австрии. Примечательно, что три его попытки получить должность преподавателя естественных наук в Высшей Школе в Брюнне окончились провалом: Менделю не давалась биология. Поэтому он остался в монастыре, где ставил эксперименты на горохе с 1856 по 1863 годы. Обработав огромный объем данных, в 1865 году Грегор Мендель вывел три основных закона генетики. Однако эту работу оценили только в начале 20 века, когда другие исследователи открыли гены.

Теория эволюции

Без теории эволюции научные открытия 19 века были бы неполны. Новые виды живых организмов появляются из-за естественного отбора – выживания наиболее приспособленных к окружающей среде особей. Основы современной теории эволюции, разработанной в 1937-1944 годах, стала теория Дарвина.

Чарльз Дарвин: научные достижения человечества

Чарлз Дарвин (1809-1882)

Английский натуралист Чарлз Дарвин опубликовал «Происхождение видов путем естественного отбора» в 1859 году. Он собирал материалы для нее с 1837 года: вел дневники наблюдений за домашними животными и растениями и переписывался с другими учеными. Идея о том, что живые организмы развиваются, а не существуют неизменными, пришла Дарвину после изучения научных трудов и кругосветного путешествия на корабле «Бигль».

Теория эволюции: 10 научных открытий

Реконструкции ископаемых гоминид

Радиоактивность

Лучевая терапия рака и атомная энергия привычны нам. Они возможны из-за радиоактивности – распада веществ с выделением элементарных частиц и излучения. При этом одно вещество может превратиться в другое.

Явление радиоактивности открыл в 1896 году физик Антуан Беккерель. Он выяснил, что соли урана засвечивают фотопластинку, даже если она защищена темной бумагой. При этом излучение урана не зависит от солнечного света, в отличие от другого типа свечения – люминесценции.

Величайшие научные достижения: Мария и Пьер Кюри

Мария и Пьер Кюри проверяют наличие в минералах урана радиоактивных элементов

Кроме Беккереля радиоактивный распад исследовали Пьер и Мария Кюри. Именно они в 1898 году открыли радиоактивность тория, а несколько позже – радия и полония. Влияние радиации на живые организмы исследовали медики разных стран в 1900-1906 годах. Вначале оно считалось благоприятным. Опасность радиации выявил Пьер Кюри, вживив радий лабораторным мышам.

Теория относительности

К 20 веку физикам стало тесно в инерциальных системах отсчета – тех, где все тела либо покоятся, либо равномерно и прямолинейно движутся. Нужно было понять, как работать в системах, где не действует классическая механика Ньютона.

Альберт Эйнштейн: научные открытия, изменившие мир

Альберт Эйнштейн (1879-1955)

Эту проблему решил Альберт Эйнштейн. Его книга «К электродинамике движущихся тел», опубликованная в 1905 году, содержала математический аппарат для неинерциальных систем. Эта теория называлась специальной теорией относительности. Позднее Эйнштейн разработал теорию гравитации и создал общую теорию относительности, которая работает в масштабе Вселенной. Согласно ей, силы инерции и гравитация имеют одну природу.

10 самых важных научных открытий в мире

Базовое понимание теории относительности: событие B одновременно с A в зеленой системе отсчета, однако оно уже произошло в синей системе и произойдет позже в красной системе.

В физике относительность одновременности — это понятие о том, что отдаленная одновременность — происходят ли два пространственно разделенных события в одно и то же время — не абсолютна, а зависит от системы отсчета наблюдателя.

Специальная теория относительности в сочетании с квантовой механикой дала релятивистскую квантовую теорию поля. На общей теории относительности основана современная физика.

Антибиотики

Научные открытия, изменившие мир, часто сложны, и их влияние на нашу жизнь не совсем очевидно. Однако одно из них известно и понятно всем – это открытие антибиотиков – веществ, убивающих бактерии. Именно антибиотики во много раз снизили смертность от раневых инфекций и болезней.

Флеминг: научные открытия, которые изменили мир

Александр Флеминг (1881-1955)

Впервые об антибиотиках начали говорить в конце 19 века. Однако эти исследования не были замечены. Поэтому считается, что первый антибиотик открыл английский микробиолог Александр Флеминг. Это открытие можно считать удачной случайностью. Флеминг обратил внимание, что в одной из чашек с микроорганизмами выросла плесень. Бактерии вокруг плесени погибли. Из плесени Флеминг получил пенициллин.

Пенициллин: научные открытия, изменившие мир

Пенициллин

Микробиологи по всему миру начали искать другие вещества, опасные для микроорганизмов. Выяснилось, что многие грибы, растения и бактерии вырабатывают антибиотики. Некоторые из них достаточно безопасны для человека.

ДНК

Джеймс Уотсон и Фрэнсис Крик – ученые, изменившие мир, описав структуру ДНК как двойную спираль. ДНК – это носитель наследственной информации у бактерий, грибов, растений, животных и некоторых вирусов. По сути это инструкция, по которой строится и работает организм. Понимание, как устроена ДНК, позволило обосновать генетику и получать генетически модифицированные организмы с заданными свойствами.

ДНК: ТОП 10 научных открытий

Дезоксирибонуклеиновая кислота (двойная спираль)

Научные открытия — FAQ

Почему вы ничего не написали о математических открытиях?

Многие величайшие открытия относятся именно к математике: хотя бы аналитическая геометрия, десятичные логарифмы, теория вероятностей, геометрия Лобачевского, десятичные дроби, дифференциальные уравнения… Строго говоря, топ-10 научных открытий целиком должен состоять из них: без математики нет других наук. Но рассказывать о них пришлось бы намного дольше. Так что в другой раз.

А экономику, социологию и философию почему забыли?

Почти по той же причине: величайшие достижения человечества в этих областях пришлось бы долго описывать. О каждом из них нужна своя статья.

Теория эволюции, теория относительности… А как же практика? Двигатель внутреннего сгорания, вакцинация, стерилизация, синтез органических веществ?

Все перечисленное, как и метод радиоуглеродного анализа, нанотрубки и клонирование млекопитающих – технологии, которые изменили мир, способы получить практический результат. Открытия же относятся к фундаментальной науке, на которой основана практика.

Что насчет более современных открытий? Бозон Хиггса, например.

Бозон Хиггса – это элементарная частица, предсказанная Питером Хиггсом в 1964 году. Открыли его 4 июля 2012 года в ходе экспериментов на Большом адроном коллайдере. Бозон Хиггса – последняя обнаруженная частица Стандартной модели – теоретической модели, описывающей взаимодействия всех 61 элементарной частицы.

Предполагалось, что у Z- и W-бозонов, отвечающих за взаимодействия на расстояниях около 2×10-18 м (меньше диаметра атомного ядра), массы быть не должно. Но она есть, и объясняет ее наличие именно Бозон Хиггса. Эти бозоны формируют поле Хиггса. Когда частицы проходят через поле Хиггса, оно сопротивляется, и это выглядит как изменения масс частиц. Открытие бозона Хиггса позволяет дополнить и расширить Стандартную модель, которая не охватывает гравитацию, темную материю и антиматерию.

А стволовые клетки? Их уже используют в медицине?

Эмбриональные стволовые клетки – это клетки, которые еще не получили специализацию, или не дифференцировались – не превратились в нервную, мышечную, покровную или какую-нибудь другую ткань. Они есть в любом организме: из них вырастают новые клетки взамен погибших.

О стволовых клетках начали говорить в 1964 году, когда выяснилось, что клетки раковой опухоли не дифференцируются. В 1981 году стволовые клетки выделили из эмбрионов мыши, а в 1998 году – из бластоцисты (ранней стадии эмбриона) человека. Сейчас во многих странах проходят клинические испытания эмбриональных стволовых клеток для лечения травм и болезней. Пока их не завершат, в медицине стволовые клетки применять не будут.

Что такое графен?

Двумерные кристаллы углерода: у них нет толщины. По сути это плоскость графита, того же, что в карандашах. Поэтому его свойства предсказали задолго до 2004 года, в котором Андрей Гейм и Константин Новоселов в Манчестерском университете получили графен. В 2010 году появилась технология, с помощью которой можно выращивать метровые листы графена. Способы использования графена разрабатывают исследователи в разных странах. Скорее всего, начнут с электроники и обнаружения химических веществ.

Можно ли говорить про научные открытия, которые изменили мир и не упоминать космические полеты?

Нельзя. Исправляемся.

В 1911 году Константин Циолковский рассчитал вторую космическую скорость – минимально необходимую, чтобы удалиться от Земли. Без этого знания космические полеты невозможны. В 1931 году Карл Янский открыл космическое радиоизлучение. В 1964 году Арно Пензиас и Роберт Уилсон обнаружили реликтовое излучение. В 1992 году был открыт пояс Койпера. Звездные потоки вокруг центра Галактики открыли в 2007 году, сверхскопление галактик Ланиакея – в 2014 году. В 2016 году зафиксировали гравитационные волны при слиянии двух черных дыр.

Можно ли создать искусственный живой организм?

Можно, и такой организм уже создан. Это искусственная бактерия Mycoplasma laboratorium, которую зовут Синтия – от слова «синтетический». Группа ученых получила ее в 2010 году. Эта бактерия не опасна для человека, а ее геном, помимо необходимых генов, содержит четыре зашифрованных сообщения от создателей.


Напоследок рекомендуем посмотреть научно-популярный фильм «Путешествие на край Вселенной», рассказывающий не только о рождении нашей планеты, но и необъятной Вселенной в целом.


Подписывайтесь на наш канал в Telegram, чтобы получать свежие статьи своевременно!

Большинство научных открытий происходят в результате кропотливой, целенаправленной и безумно сложной работы, цель которой сводится к одной-единственной задаче — совершить прорыв в той или иной сфере. Однако история полна случаев, когда невероятные открытия совершались ученым тогда, когда их взор был направлен совершенно в противоположную сторону.

18 случайных научных изобретений и открытий, изменивших мир. Фото.

Иногда очень значимые открытия происходят совершенно случайным образом. Взять хотя бы разработку препарата с целью улучшения кровотока в миокарде и лечения стенокардии и ишемической болезни сердца. Для сердца это лекарство, как показали клинические испытания, оказалось практически бесполезно, но так на свет появился силденафил, более известный сейчас как Виагра. Открытие того же сахарина – искусственного заменителя сахара – стало следствием усталости, а возможно, простой забывчивости российского профессора химии помыть руки перед едой.

В большинстве случаев исследователи, стоящие за подобными открытиями, не стали бы называть их по-настоящему «случайными», поскольку перед этим люди нередко проводили множество бессонных ночей и анализировали огромную гору научной информации – все ради того, чтобы действительно совершить открытие, хотя и не то, что получилось в итоге.

Стремление понять, как работает тот или иной новый продукт, тоже нередко вносит свою лепту, как это было с изобретателем специального вещества, предназначавшегося для чистки стен от сажи. Всего лишь простое любопытство и желание сменить один ингредиент на другой воплотились в очень интересное и весьма прибыльное изобретение – пластилин.

Также следует понимать, что ни одно из изменивших этот мир «случайных» изобретений не было бы возможным без наличия того, кто смог бы своевременно разглядеть потенциал и ценность открытия. И все же история показывает, что лучшие инновации могут приходить в этот мир в самый неожиданный момент.

Содержание

  • 1 Микроволновая печь
  • 2 Хинин
  • 3 Рентгеновское излучение
  • 4 Радиоактивность
  • 5 Застежки-липучки
  • 6 Сахарин
  • 7 Имплантируемый кардиостимулятор
  • 8 Пластилин
  • 9 Пенициллин
  • 10 Инсулин
  • 11 Вулканизированная резина
  • 12 Кукурузные хлопья
  • 13 Тефлон
  • 14 Суперклей
  • 15 Ударопрочное стекло
  • 16 Вазелин

Микроволновая печь

18 случайных научных изобретений и открытий, изменивших мир. Микроволновая печь. Фото.

Инженер компании «Raytheon» Перси Спенсер, занимавшийся изготовлением оборудования для радаров, в 1945 году совершил одно из важнейших для этого мира открытий. Он обнаружил, что СВЧ-излучение способно нагревать предметы. Легенд о том, как он это выяснил, есть несколько. Согласно одной из них, однажды он случайно оставил в кармане шоколадный батончик и приступил к работе с магнетроном, а спустя несколько минут с удивлением почувствовал, как в шоколад в кармане начал плавиться. Попытавшись выяснить, в чем дело, Спенсер решил провести эксперимент с другими продуктами: яйцами и зернами кукурузы. Из увиденного он сделал вывод, что причиной наблюдаемого является микроволновое излучение.

Как бы там ни было, в 1946 году Спенсер получил патент на первую микроволновую печь. Первая микроволновка «Radarange» была выпущена в 1947 году той же фирмой, в которой он работал. Но предназначалась она не для разогрева пищи, а для быстрой разморозки продуктов и использовалась исключительно военными. Ее высота составляла 168 сантиметров, масса — 340 кг, а мощность — 3 кВт, что примерно в два раза больше мощности современных бытовых СВЧ-печей. Микроволновка для военных стоила 3000 долларов. В 1965 году вышел ее бытовой вариант, который продавался за 500 долларов.

Хинин

18 случайных научных изобретений и открытий, изменивших мир. Хинин. Фото.

В течение длительного времени хинин использовался как основное средство лечения малярии. Сейчас его по-прежнему можно встретить в качестве одного из компонентов лекарств против малярии, а также в качестве добавки в различные тонизирующие напитки.

Иезуитские миссионеры использовали хинин еще с начала 1600 годов, обнаружив его в Южной Америке и привезя впоследствии в Европу, однако, согласно одной из легенд, применение этого вещества для лечения болезней практиковалось представителями андских цивилизаций еще раньше, а открытие хинина, и в частности его свойств, нередко связывают со случаем удачи.

В одной из легенд говорится об одном андском жителе, потерявшемся в джунглях и подхватившем малярийную лихорадку. Совсем обессиленный от жажды, он выпил из лужи воды, находившейся у подножия хинного дерева. Горьковатый привкус воды сначала очень напугал человека. Тот подумал, что выпил что-то, что еще сильнее усугубит его состояние. Но, к счастью, все произошло совсем наоборот. Через время его лихорадка отступила, человек смог найти дорогу домой и поделиться историей об удивительном дереве.

Эта история не так хорошо задокументирована, как та же официальная версия о миссионере Бернабе Кобо, который привез полученный от индейцев хинин в Европу и вылечил им жену вице-короля Перу, однако мы просто не могли проигнорировать интересную легенду об удаче, которая впоследствии изменила этот мир.

Рентгеновское излучение

В 1895 году немецкий физик Вильгельм Рентген работал с катодно-лучевой трубкой. Несмотря на то, что сама трубка была экранирована, Рентген заметил, что картон, покрытый платиносинеродистым барием и находившийся рядом с трубкой, начинал светиться в темной комнате.

Рентген попытался блокировать лучи, но большинство вещей, которые он помещал перед ними, проявляли аналогичный эффект. Когда в конце концов он поставил перед трубкой свою руку, то заметил, что она начинает просвечиваться на изображении, проецируемом на экране. Свое открытие он назвал «икс-лучами» (X-rays). После Рентген заменил трубку фотографической пластиной и получил первую рентгенограмму.

Вскоре после этого технология была адаптирована медицинскими учреждениями и исследовательскими лабораториями. Однако опасность длительного воздействия рентгеновских лучей ученым еще только предстояло понять.

Радиоактивность

18 случайных научных изобретений и открытий, изменивших мир. Радиоактивность. Фото.

Радиоактивность была открыта в 1896 году французским физиком А. Беккерелем. Он занимался исследованием связи люминесценции и недавно открытых рентгеновских лучей.

Беккерель решил выяснить, не сопровождается ли всякая люминесценция рентгеновскими лучами? Для проверки своей догадки он взял несколько соединений, в том числе одну из солей урана, фосфоресцирующую желто-зеленым светом. Осветив ее солнечным светом, он завернул соль в черную бумагу и положил в темном шкафу на фотопластинку, тоже завернутую в черную бумагу. Через некоторое время, проявив пластинку, Беккерель действительно увидел изображение куска соли. Но люминесцентное излучение не могло пройти через черную бумагу, и только рентгеновские лучи могли в этих условиях засветить пластинку.

Проведя несколько аналогичных экспериментов с использованием урановой соли, он понял, что открыты новые лучи, проходящие сквозь непрозрачные предметы, но не являющиеся рентгеновскими.

Беккерель установил, что интенсивность излучения определяется только количеством урана и совершенно не зависит от того, в какие соединения он входит. Таким образом, это свойство было присуще не соединениям, а химическому элементу — урану.

Застежки-липучки

18 случайных научных изобретений и открытий, изменивших мир. Застежки-липучки. Фото.

В 1941 году швейцарский инженер Жорж де Местраль решил прогуляться в Альпах со своей собакой. По возвращении домой он, как обычно, принялся отчищать шерсть животного от головок репейника. Но на этот раз решил посмотреть, как те выглядят под микроскопом. Как оказалось, на каждой головке имелись крошечные крючки, с помощью которых они и цеплялись к шерсти животного и одежде.

Инженер не планировал придумывать новую систему застежек, но увидев, насколько просто и крепко цепляются крючки к ткани и шерсти, он все-таки не устоял перед соблазном. Через годы проб и ошибок он понял, что самым подходящим материалом для создания липучек является нейлон.

Застежки-липучки стали очень популярными вскоре после того, как технология была адаптирована аэрокосмическим агентством NASA. Позже липучки стали широко использоваться в производстве повседневной одежды и обуви.

Сахарин

18 случайных научных изобретений и открытий, изменивших мир. Сахарин. Фото.

Сахарин представляет собой искусственный подсластитель, примерно в 400 раз слаще сахара. Он был открыт в 1878 году немецким химиком российского происхождения Константином Фальбергом в Университете Джона Хопкинса. Фальберг и его руководитель американский профессор Айра Ремсен вели исследования производных битума (каменноугольные смолы).

После долгого дня, проведенного в лаборатории, Фальберг забыл помыть руки перед ужином. Взяв в руку хлеб и откусив кусочек, ученый заметил, что тот имеет сладковатый вкус, как, впрочем, и вся остальная еда, к которой он прикасался руками.

Он вернулся в лабораторию и стал проводить эксперименты по смешиванию различных составляющих, пока в конечном итоге не обнаружил, что при сочетании орто-сульфобензойной кислоты с хлористым фосфором и аммиаком получается вещество с тем самым сладковатым привкусом (следует отметить, что практика пробовать случайные химикаты на вкус совсем не типична для ученых).

Фальберг запатентовал химическую формулу сахарина в 1884 году (не вписав в держателя патента Ремсен, несмотря на то что они вместе до этого опубликовали первую научную статью по этому открытию). Широкое распространение искусственный подсластитель получил во время Первой мировой войны, когда запасы и поставки сахара в мире были ограничены.

Тесты вещества показали, что оно не усваивается организмом и не является калорийным. В 1907 году сахарин в качестве заменителя сахара стал приниматься диабетиками как диабетический подсластитель, не содержащий сахар.

Имплантируемый кардиостимулятор

В 1956 году американский инженер и изобретатель Уилсон Грэйтбатч занимался разработкой устройства, записывающего сердечный ритм. Потянувшись в коробку за резистором, который должен был завершить контур схемы, он достал неправильный – резистор оказался большего размера.

Тем не менее, установив этот резистор, инженер обнаружил, что контур излучает электрические пульсации. Частота пульсаций натолкнула его на мысль о сердечном ритме. Грэйтбатч загорелся желанием создать компактный вживляемый кардиостимулятор. Оставалось лишь придумать способ, как уменьшить размеры стимулятора, чтобы при этом он мог работать.

Через два года он представил первый вживляемый кардиостимулятор, подающий искусственные импульсы для стимуляции работы сердца. Устройство было имплантировано собаке. Эта запатентованная инновация привела к началу производства и дальнейшему развитию кардиостимуляторов.

Пластилин

18 случайных научных изобретений и открытий, изменивших мир. Пластилин. Фото.

Вопрос о том, кого считать изобретателем пластилина, является спорным. В Германии им считают Франца Колба (патент 1880 года), в Великобритании — Уильяма Харбута (патент 1899 года). Существует еще одна версия создания пластилина, согласно которой это вещество придумал Ной Маквикер.

Липкий материал был создан Ноем Маквикером, работавшим на тот момент со своим братом Клео в компании Kutol, производившей мыло. Однако изначально изготовленный Маквикером материал не задумывался как игрушка. Он разрабатывался как средство для очистки обоев.

Одной из проблем, с которой приходилось сталкиваться держателям каминов, которыми люди отапливали дома, была сажа, оседавшая на стены и портившая обои. Липкая глина обещала беспроблемную очистку. Однако вскоре в моду вошли виниловые обои, которые можно было мыть простой губкой, смоченной водой, и чистящая глина стала неактуальной.

Когда Маквикеры уже собирались выйти из бизнеса, к ним поступила новая идея, предложенная воспитательницей детского сада по имени Кей Зуфалл, которая заметила, что материал отлично меняет форму и его можно использовать для лепки. Через общих близких родственников она сообщила об этой идее Ною Маквикеру. Тот, в свою очередь, решил удалить из материала моющую составляющую и добавил в него краситель. Изначальное название нового материала «Kutol’s Rainbow Modelling Compound» решили заменить на предложенный Кей вариант «пластилин».

Пенициллин

18 случайных научных изобретений и открытий, изменивших мир. Пенициллин. Фото.

«Когда я проснулся на рассвете 28 сентября 1928 года, я, конечно, не планировал революцию в медицине своим открытием первого в мире антибиотика или бактерии-убийцы. Но полагаю, что именно это я и сделал».

В 1928 году сэр Александр Флеминг, профессор бактериологи, вернувшись в свою лабораторию спустя месяц отдыха со своей семьей, обнаружил, что в одной из его чашек Петри появились плесневые грибы, которые уничтожили до этого находившиеся в ней колонии стафилококков, но при этом не тронули другие культуры.

Флеминг отнес грибы, выросшие на пластине с его культурами, к роду пеницилловых и спустя несколько месяцев назвал выделенное вещество пенициллином. Но поскольку Флеминг не был химиком, он не был в состоянии извлечь и очистить активное вещество.

О своем открытии ученый написал в 1929 году в британском журнале Экспериментальной Патологии, но его статье было уделено мало внимания. До 1940 года Флеминг продолжал свои опыты, пытаясь разработать методику быстрого выделения пенициллина, которую можно было бы использовать в дальнейшем для более масштабного применения.

Впервые пенициллин был применен для лечения человека британскими учеными Говардом Флори и Эрнстом Чейном 2 февраля 1941 года, что положило начало эпохи антибиотиков.

Инсулин

18 случайных научных изобретений и открытий, изменивших мир. Инсулин. Фото.

Открытие, которое позже позволило изобрести инсулин, стало чистой случайностью.

В 1889 году два доктора из Страсбургского университета, Оскар Минковски и Джозеф вон Меринг, пытаясь понять, как поджелудочная железа влияет на пищеварение, удалили этот орган у здоровой собаки. Спустя несколько дней они обнаружили, что вокруг урины подопытного пса собираются мухи, что оказалось совершенной неожиданностью.

Они провели анализ этой мочи и обнаружили в ней сахар. Ученые поняли, что его наличие связано с удаленной несколькими днями ранее поджелудочной железой, что привело к тому, что у собаки развился диабет.

Тем не менее эти двое ученых так и не выяснили, что гормоны, вырабатываемые поджелудочной железой, регулируют сахар в крови. Это выяснили исследователи из Университета Торонто, которые в рамках экспериментов, проводившихся с 1920 по 1922 годы, смогли выделить гормон, который впоследствии получил название инсулин.

За это революционное открытие ученые из Университета Торонто были удостоены Нобелевской премии, а фармацевтическая компания Eli Lilly and Company, с одним из владельцев которой был знаком один из ученых, начала первое промышленное производство этого вещества.

Вулканизированная резина

18 случайных научных изобретений и открытий, изменивших мир. Вулканизированная резина. Фото.

Изобретателем способа вулканизации считают американца Чарльза Гудьира, который с 1830 года пытался создать материал, способный оставаться эластичным и прочным в жару и холод.

Он обрабатывал резиновую смолу кислотой, кипятил ее в магнезии, добавлял различные вещества, однако все его изделия превращались в липкую массу в первый же жаркий день.

Открытие пришло к изобретателю случайно. В 1839 году, работая на Массачусетской резиновой фабрике, он однажды уронил на раскаленную плиту ком резины, перемешанной с серой.

Вопреки ожиданию, она не расплавилась, а, наоборот, обуглилась, словно кожа. В первом своем патенте он предложил подвергать каучук воздействию нитрита меди и царской водки. Впоследствии изобретатель обнаружил, что резина становится невосприимчивой к температурным воздействиям при добавлении серы и свинца.

После многочисленных испытаний Гудьир нашел оптимальный режим вулканизации: он смешал каучук, серу и свинцовый порошок и нагрел эту смесь до определенной температуры, в результате чего получилась резина, которая не изменяла свои свойства ни под влиянием солнечных лучей, ни под воздействием холода.

Кукурузные хлопья

18 случайных научных изобретений и открытий, изменивших мир. Кукурузные хлопья. Фото.

История кукурузных хлопьев берет начало в XIX веке. Владельцы санатория «Батл-Крик» в штате Мичиган (США), доктор Келлог и его брат Вилл Кит Келлог готовили какое-то блюдо из кукурузной муки, но им срочно понадобилось отлучиться по неотложным делам пансиона.

Когда же они вернулись, то обнаружили, что кукурузная мука, находившаяся на строгом учете, чуть-чуть испортилась. Но они все равно решили приготовить из муки тесто, однако тесто свернулось, и получились хлопья и комки. Братья от отчаяния пожарили эти хлопья, и оказалось, что некоторые из них стали воздушными, а некоторые приобрели приятную хрустящую консистенцию.

Впоследствии эти хлопья были предложены пациентам доктора Келлога в качестве нового блюда, и подававшиеся к столу с молоком и зефиром они были очень популярны.

Добавив в хлопья сахар, Вилл Кит Келлог сделал их вкус более приемлемым для широкой аудитории.

В 1894 году оригинальные кукурузные хлопья были запатентованы американским врачом Джоном Харви Келлогом. В 1906 году Келлоги начали массовое производство нового типа пищи и основали собственную компанию.

Тефлон

18 случайных научных изобретений и открытий, изменивших мир. Тефлон. Фото.

Благодарить за изобретение тефлона стоит химика Роя Планкетта. В 1938 году он работал в одной из лабораторий фирмы Дюпон (DuPont) в штате Нью-Джерси. В ту пору Планкетт изучал свойства фреонов.

Однажды он под сильным давлением заморозил тетрафторэтилен, вследствие чего был получен воскообразный белый порошок, который в дальнейшем продемонстрировал удивительные свойства.

Терзаемый любопытством Планкетт провел несколько экспериментов с новым веществом и обнаружил, что порошок не только жаропрочен, но еще и имеет низкие фрикционные свойства. Через два года уже был налажен выпуск нового материала, и мир узнал его под названием «тефлон».

Суперклей

18 случайных научных изобретений и открытий, изменивших мир. Суперклей. Фото.

Когда в 1942 году американский химик Гарри Кувер создал вещество, которое позже будет названо «суперклеем», он на самом деле экспериментировал с новыми материалами для прицелов в боевом оружии. Однако вещество из-за излишней клейкости было забраковано.

В 1951 году американские исследователи во время поисков термостойкого покрытия для кабин истребителей случайно обнаружили свойство цианоакрилата прочно склеивать различные поверхности. В 1955 году разработка была запатентована, а в продажу поступила в 1959 году.

Суперклей долгое время присутствовал в различных американских ток-шоу, где выяснялись его все новые и новые потрясающие свойства.

Цианокрилатный клей мог склеивать любые поверхности, даже если они не были предварительно зачищены должным образом. Основная проблема этого клея состоит не в том, чтобы намертво склеить детали, а в том, чтобы их потом разъединить.

Ударопрочное стекло

18 случайных научных изобретений и открытий, изменивших мир. Ударопрочное стекло. Фото.

Небьющееся стекло широко используется в автомобильной промышленности и строительстве. Сегодня оно повсюду, но когда французский ученый Эдуард Бенедиктус в 1903 году случайно уронил на пол пустую стеклянную колбу и она не разбилась, он очень удивился.

Как оказалось, до этого в колбе хранился раствор коллодия, раствор испарился, но стенки сосуда остались покрыты его тонким слоем.

В то время во Франции интенсивно развивалось автомобилестроение, и ветровое стекло изготовляли из обычного стекла, что было причиной множества травм водителей, на что и обратил внимание Бенедиктус.

Он увидел реальную выгоду для спасения человеческих жизней в использовании его изобретения в автомобилях, но автомобилестроители посчитали его слишком дорогим для производства. Сейчас же оно используется повсеместно.

Вазелин

18 случайных научных изобретений и открытий, изменивших мир. Вазелин. Фото.

Название «вазелин» было запатентовано в США как торговая марка и торговый знак в 1878 году. Всем известное косметическое и лечебное средство изобрел и запатентовал эмигрировавший в Америку английский химик Роберт Чезбро. В этом изобретении ученому «помогли» нефтяники.

Когда в 1859 году начался нефтяной бум, Чезбро, общаясь с нефтяниками, заинтересовался липким нефтепродуктом – парафинообразной массой, которая при нефтедобыче налипала к бурильным установкам и забивала насосы. Он заметил, что рабочие постоянно используют эту массу при ожогах и порезах в качестве успешно заживляющего раны средства.

Ученый стал экспериментировать с массой и сумел выделить из нее полезные ингредиенты. Получившимся веществом он смазал свои многочисленные ожоги и шрамы, полученные во время опытов.

Эффект оказался поразительным. Раны зажили, причем довольно быстро. В дальнейшем поразительную ранозаживляющую способность этого вещества Чезбро продолжил совершенствовать и, пробуя на себе, наблюдал за результатом.

В этой статье мы хотим познакомить вас с известными людьми — учеными и философами, которым удалось изменить мир. Все, чем мы пользуемся каждый день, — результат их усилий, кропотливой работы и таланта.

Аристотель (384 — 322 гг. до н. э.)

Аристотель

Аристотель — яркий мыслитель эпохи античности. Он родился в македонском городе Стагире (поэтому иногда его называют Стагиритом) в семье придворного врача. Знатное происхождение позволило с детства изучать науку — в роду отца Аристотеля было принято уделять внимание образованию детей. После смерти родителей будущего философа стал воспитывать муж его старшей сестры: мальчик ни в чем не нуждался, проводил время в окружении ученых людей и впитывал их идеи.

В Афинах Аристотель стал любимым учеником Платона — лучшего философа своего времени. Однако Аристотель не боялся спорить с наставником, отстаивая собственный взгляд на истину. Вернувшись в Македонию, мыслитель стал воспитателем Александра Македонского.

В течение жизни Аристотель занимался риторикой, философией, логикой, естествознанием. Список его достижений большой: 

  • впервые стал пользоваться классификациями, что позже стало основой многих наук;
  • изучал небесные явления и животных;
  • задумывался о добродетелях — справедливости, морали, щедрости;
  • открывал законы логики. 

Архимед (287 — 212 гг. до н. э.)

Архимед

Архимед — древнегреческий ученый из Сиракуз. Считается, что его отец был математиком и происходил из благородной семьи.

Архимед учился в египетском городе Александрии, где располагалась знаменитая Александрийская библиотека — центр науки и образования. После учебы он увлеченно занимался астрономией и стал первым ученым среди своих современников, предположившим, что планеты вращаются вокруг Солнца, а не наоборот.

Изобретения ученого принесли много пользы его Родине, облегчая борьбу с врагами: боевые машины Архимеда раз за разом спасали Сиракузы. До самой старости Архимед занимался математикой и работал над новыми открытиями. Он погиб от рук солдата из армии Марка Клавдия Марцелла, поскольку отказался выходить к противникам, пока не закончит расчеты.

Важнейшие открытия ученого:

  • закон Архимеда (описание силы, которая действует на тело, погруженное в жидкость);
  • предложил систему записи сверхбольших чисел;
  • изобрел «Архимедов винт» — винтовой насос;
  • разрабатывал методы вычисления площади различных фигур. 

Пифагор (570 — 490 гг. до н. э.)

Пифагор

Пифагор — древнегреческий научный деятель из Самоса. Его отец был торговцем драгоценностями. К сожалению, Пифагор не оставил после себя никаких письменных работ. 

Как свидетельствуют источники, описывающие жизнь Пифагора, в юности он учился в Египте у жрецов, получив допуск к лучшим библиотекам.

В течение жизни ученый побывал во многих странах. В конце жизни он обосновался в Италии, где создал религиозно-философскую группу. 

Его последователи верили в переселение душ, проповедовали стремление человека к высшей Истине, верили в музыку сфер — звуки, издаваемые планетами и звездами. Пифагора и его учеников преследовали за их взгляды — местные жители считали их безбожниками.

Что подарил миру Пифагор:

  • теорему Пифагора в геометрии;
  • теорию о том, что Земля круглая;
  • учение о четных и нечетных числах, пропорциях;
  • глубокое понимание углов, треугольников, многогранников;
  • принципы музыкальной гармонии.

Леонардо да Винчи (1452 — 1519 гг.)

Леонардо да Винчи

Леонардо да Винчи  — итальянский художник и изобретатель эпохи Возрождения. Он родился в семье успешного нотариуса и крестьянки. Собственной фамилии у ученого не было, поскольку он был внебрачным ребенком. «Да Винчи» означает, что он рожден неподалеку от города Винчи.

Будучи юношей, ученый переехал во Флоренцию и стал подмастерьем художника. Леонардо изучал черчение, работу с материалами, скульптурами. Скоро он стал мастером и начал собственный путь.

Леонардо да Винчи был членом Гильдии художников, затем открыл собственную мастерскую, где постоянно творил, а также занимался инженерными проектами. Картины быстро сделали да Винчи известным человеком: многие монархи покровительствовали ему.

В старости Леонардо не мог двигать правой рукой из-за перенесенного инсульта, но продолжал работать до последней минуты.

Главные достижения художника и изобретателя:

  • парашют, основы летальных аппаратов, водолазный костюм, самодвижущаяся тележка (будущий автомобиль), прожектор и др.;
  • знаменитые произведения искусства: «Тайная вечеря», «Мона Лиза», «Иоанн Креститель», «Витрувианский человек».

Галилео Галилей (1564 — 1642 гг.)

Галилео Галилей

Галилео Галилей родился в Италии, в Пизе. Ему была уготована судьба экспериментатора и бунтаря.

Галилей происходил из старинного дворянского рода. В детстве мальчик любил искусство, занимался творчеством и хотел стать священником, но отец хотел, чтобы сын стал врачом. 

Юноша начал изучать медицину и античную философию, не боялся спорить с авторитетными людьми. Познакомившись с работами Архимеда, ученый окончательно полюбил геометрию и оставил учебу, погрузившись в изучение физики и астрономии.

Можно сказать, что физика как наука началась именно с открытий Галилео Галилея. Главные законы, которые изучают на уроках в школе, обозначил именно он. 

Астрономические наблюдения привели его к выводу, что планеты вращаются вокруг Солнца, а не иначе, как было принято думать. Католическая церковь не простила ученому такого вольнодумства: его отлучили от церкви. Галилей считал, что религиозные тексты помогают человеку бороться со страданием, но к науке не имеют никакого отношения. 

Галилео Галилей известен тем, что:

  • создал первый телескоп, с помощью которого открыл Луну и исследовал Млечный Путь;
  • представил гелиоцентрическую систему мира, разрушив теорию Аристотеля (последний полагал, что планеты неподвижны, а Солнце вращается вокруг них);
  • открыл законы инерции, свободного падения, постоянного периода колебаний и др.;
  • создал микроскоп и термоскоп;

Исаак Ньютон (1643 — 1727 гг.)

Исаак Ньютон

Исаак Ньютон родился в Англии в семье фермеров. В детстве он не мог похвастаться крепким здоровьем, часто проводил время в одиночестве, погружаясь в чтение, проведение опытов и экспериментов. 

Мать хотела, чтобы вместо обучения в школе он помогал вести хозяйство, но за талантливого ученика вступились преподаватели, и Ньютон продолжил получать образование. Спустя годы он попал в Кембридж. 

Ученый прожил более 80 лет — очень долгую жизнь. В старости он изучал Священное Писание, историю религии, интересовался алхимией, описывал свои философские взгляды. Также Ньютон написал книгу собственных размышлений о жизни, но она сгорела вместе со многими научными разработками. Это так потрясло физика, что он стал страдать нервным расстройством. 

Труды Исаака Ньютона повлияли на развитие науки на много веков вперед:

  • открыл теорию движения небесных тел;
  • сформулировал закон всемирного тяготения;
  • разработал 3 закона классической механики;
  • выдвинул гипотезу о том, что Земля не идеально круглая, а слегка сплюснута со стороны полюсов;
  • развивал такую научную дисциплину, как оптика;
  • начал изучение скорости звука. 

Карл Линней (1707 — 1778 гг.)

Карл Линней

Карл Линней — шведский биолог, благодаря которому появилась наука ботаника в современном понимании. 

Отец Линнея был священнослужителем, выращивал растения и смог привить любовь к природе своему сыну. Даже их фамилия в переводе с латыни означает «липа» — ее выбрал отец. В школе мальчик интересовался исключительно растениями, почти не интересовался другими занятиями. 

В Лундском университете Линней изучал растения, минералы, животных, страстно изучал научные труды предшественников. Во время учебы биолог обнаружил, что флора и фауна никак не классифицируются. Это сподвигло его разработать собственную систему, которая в будущем стала основой естествознания. 

Карл Линней стал первым, кто включил человека в систему животного царства. По тем временам это был смелый, революционный поступок: церковь не одобряла такие взгляды, отстаивая, что человек — не животное, а подобие Бога. 

Достижения «отца ботаники»:

  • описал более 1500 видов растений;
  • разделил их на 24 класса, создав стройную систему;
  • предложил описывать флору и фауну через род и вид для удобства, используя латинский язык;
  • признал, что кроме постоянства в природе существуют и переходные виды живых существ и растений. 

Алессандро Вольта (1745 — 1827 гг.)

Алессандро Вольта

Алессандро Вольта — итальянский физик. Родился в Комо. Мальчик довольно долго отставал в развитии по сравнению со своими ровесниками, однако к началу школьного периода Алессандро стал быстрее усваивать новое: воспитанием будущего ученого занялся дядя. 

Он должен был стать юристом, но решил посвятить жизнь естественным и точным наукам. Учился в Королевской семинарии. Став профессором, обучал учеников прогрессивно и смело, бывал в разных странах, перенимая опыт других исследователей. Всю жизнь физик изучал электричество.

Вольта прожил более 80 лет. Интересно, что все личные вещи ученого сгорели после его смерти из-за неисправной проводки.

Достижения и открытия Алессандро Вольта: 

  • в его честь назвали единицу измерения электрического напряжения — вольт;
  • изобрел электрофор — прибор для работы со статическим электричеством;
  • создал «Вольтов столб» — первый в мире генератор электрического тока; 
  • изобрел конденсатор;
  • разработал гальваническую батарею, предшественницу электрической батареи;
  • выявил и исследовал метан.

Майкл Фарадей (1791 — 1867 гг.)

Майкл Фарадей

Майкл Фарадей— физик-экспериментатор английского происхождения. Родился в семье кузнеца, зарабатывал на жизнь, работая разносчиком газет. 

Фарадей учился самостоятельно, читая о физике и химии. Мальчик закончил лишь начальную школу, но посещал собрания Городского философского общества, чтобы восполнить недостаток знаний. Юноша участвовал в обсуждениях, высказывал свою точку зрения, постигал азы химии и астрономии. Ученые заметили его талант — один из посетителей подарил ему билет на цикл лекций Королевского института. 

Физик Х. Дэви дал начинающему ученому шанс, сделав его ассистентом, а потом и лаборантом. Удача улыбнулась юному исследователю. 

Фарадей занимался популяризацией науки, читал лекции, объяснял материал ученикам. Одна из его лучших научно-популярных книг — «История свечи».

Что открыл Фарадей: 

  • магнитное вращение — создал первую модель электродвигателя;
  • доказал, что все известные на тот момент виды электричества едины по происхождению;
  • впервые употребил выражение «магнитное поле» и описал его свойства;
  • изобрел трансформатор;
  • произвел химический анализ известняка;
  • ввел термины «электролиз», «катод», «электрод» и многие другие.

Чарльз Дарвин (1809 — 1882 гг.)

Чарльз Дарвин

Чарльз Дарвин родился в Англии, в успешной дворянской семье. Дед Дарвина был известным натуралистом и прогрессивным деятелем науки. Отец занимался медициной. 

Юноша хотел пойти по стопам предков и начал учиться на врача, но понял, что хирургия ему не интересна, а вид крови вызывает страх. Вместо этого Дарвин погрузился в таксидермию, а потом закончил богословский факультет Кембриджа.

Один из наставников Дарвина взял его в кругосветное путешествие в качестве натуралиста. Ученый описывал морских существ, особенности ландшафта, вел заметки. Он был у побережья Бразилии, Аргентины, Тасмании. Вернувшись из экспедиции, Дарвин собрал свои наблюдения, издав книгу. 

Вот главные достижения Чарльза Дарвина:

  • выделил естественный отбор как основную силу эволюции живых существ в труде «Происхождение видов путем естественного отбора»;
  • выдвинул гипотезу, что люди произошли от обезьяноподобного предка;
  • определил, как окружающая среда влияет на развитие вида;
  • внес вклад в развитие генетики.

Луи Пастер (1822 — 1895 гг.)

Луи Пастер

Луи Пастер — французский биолог и химик. Сын кожевенника отлично учился в школе. Посещая колледж, он ходил на открытые лекции в Сорбонне — одном из лучших университетов Франции. 

Закончив Высшую нормальную школу, ученый полностью погрузился в естественные науки. Его интересовала природа некоторых химических процессов. 

Труд Пастера постоянно приносил обществу пользу. Исследователь спас французских виноделов от разорения: ему удалось выяснить, почему вино портится со временем и как это предотвратить. Шелководство тоже было спасено Пастером: он долго изучал болезни тутового шелкопряда. 

Также Луи Пастер увлекался иммунологией, мечтая победить холеру, горячку, бешенство и другие болезни. Сам ученый довольно рано пережил инсульт и был вынужден работать с помощью только одной руки и ноги.

Когда Пастеру исполнилось 70 лет, французские власти подарили ему медаль с надписью «Благодетель человечества» в знак благодарности за заслуги ученого. В Париже построили Пастеровский институт.  

Достижения Луи Пастера: 

  • открыл биологическую природу брожения;
  • впервые предложил хранить продукты, подвергая их термической обработке — этот способ назвали пастеризацией в его честь;
  • разработал прививки от сибирской язвы и бешенства. 

Александр Грейам Белл (1847 — 1922 гг.)

Александр Грейам Белл

Александр Грейам Белл — изобретатель шотландского происхождения. Родился он в Эдинбурге. Родственники мальчика занимались ораторским мастерством, сурдопедагогикой и риторикой, поэтому Александр многое знал о человеческой речи и обращал внимание на этот аспект жизни. Он отлично владел языком и был подкован в области литературы.

Белл недолго учился в Эдинбургском университете, затем работал учителем и параллельно изучал теорию звука. Позже ему удалось поступить в Лондонский университет. 

Переехав в Канаду с семьей, чтобы поправить плохое здоровье, Белл с головой погрузился в эксперименты: он хотел научиться передавать звук человеческого голоса по проводам. 

После изобретения телефона люди долго не воспринимали Белла всерьез, считая, что он создал бесполезную игрушку. Но время доказало обратное. Сам Белл редко пользовался своим творением, считая, что слова не должны отвлекать от работы. 

Чем человечество обязано Александру Грейаму Беллу: 

  • основы телефонии;
  • фотофон (передача звука с помощью света);
  • металлодетекторы. 

Никола Тесла (1856 — 1943 гг.)

Никола Тесла

Никола Тесла — всемирно известный изобретатель. Он родился в городе Смиляне, в Австрийской империи. Отец ученого был священником, поэтому предполагалось, что Тесла продолжит семейную традицию и получит духовное образование. Однако юноша мечтал учиться инженерному делу.

Жизнь все расставила по своим местам: Тесла тяжело заболел холерой во время эпидемии, и отец пообещал ему, что разрешит сыну получить техническое образование, если тот победит болезнь. Тесла выздоровел и поступил в высшее техническое училище в Граце. Также он учился в Праге на философском факультете.

Переехав в США, работал в команде изобретателя Томаса Эдисона, но позже покинул ее из-за разногласий (Эдисон поддерживал идею использования постоянного тока и отказывался от экспериментов Теслы). Затем Тесла основал собственную компанию и трудился всю жизнь. Его часто называют человеком, который изобрел 20-й век.

В течение жизни Никола Тесла сделал следующее:

  • изобрел способ передачи электроэнергии на расстоянии;
  • предсказал появление интернета;
  • внедрил использование переменного тока;
  • работал над созданием радио.

Мария Кюри (1867 — 1934 гг.)

Мария Склодовская-Кюри

Мария Склодовская-Кюри — физик, химик. Она родилась в Польше, в Варшаве. Родители девочки были учителями.

В юности девушка переехала во Францию и поступила в Сорбонну, чтобы заниматься физикой, естественными науками. В университете Мария изучала радиоактивность и стала первой женщиной в Сорбонне, которая получила возможность преподавать там. Правда, стать членом Французской академии наук Кюри не смогла: женщины никогда не вступали туда, и общество встретило эту новость с возмущением.

В течение жизни Склодовская-Кюри получила две Нобелевские премии: по физике (совместно с мужем, Пьером Кюри) и химии (за исследования, которые Мария проводила единолично после его смерти).

Из-за работы с радиоактивными веществами здоровье Кюри очень ослабло: появилась анемия, судороги. Тело исследовательницы по сей день находится в свинцовом гробу, а к ее личным вещам нельзя прикасаться — настолько высок уровень радиации.

В конце жизни Мария почти потеряла зрение, но продолжала исследования. Она скончалась в Париже.

Главные достижения Марии Склодовской-Кюри:

  • открытие элементов радия и полония;
  • исследования радиоактивности;
  • описание влияния радиации на живых существ.

Альберт Эйнштейн (1879 — 1955 гг.)

Альберт Эйнштейн

Альберт Эйнштейн — ученый, лауреат Нобелевской премии по физике. Он родился в городе Ульме в Германии, в еврейской семье. Родственники Эйнштейна занимались торговлей, но много денег это занятие не приносило.

В детстве Эйнштейн уделял много внимания религиозному образованию, но со временем понял, что духовные тексты не дают ответы на интересующие его вопросы. Так началось его увлечение наукой. 

Закончив высшее техническое училище в Цюрихе, Эйнштейн стал работником патентного бюро; также он жил в США и преподавал в Принстоне. 

Ученый начал активно изучать теоретическую физику, и усилия оправдали себя: в 1905 — 1906 гг он опубликовал свои лучшие статьи с научными открытиями. 

Ученый был пацифистом, осуждал убийства, выступал против жестокости нацизма. Эйнштейна огорчало, что его разработки были использованы при изготовлении ядерного оружия: он мечтал уладить существующие конфликты между странами.

Вот крупнейшие открытия физика-теоретика: 

  • Эйнштейн впервые подробно описал броуновское движение, доказав существование атомов и молекул;
  • открыл общую и специальную теорию относительности;
  • описал свойства гравитации.

Нильс Бор (1885 — 1962 гг.)

Нильс Бор

Нильс Бор родился в Дании, в Копенгагене. Мальчик с детства интересовался наукой: его отец был известным физиологом и поддерживал ребенка. 

В студенческие годы молодой ученый занимался гидродинамикой, а затем переключился на физику, продемонстрировав успешное начало карьеры. 

Отправившись в Кембридж, Бор стал работать вместе с Джоном Томсоном — автором модели атома. Затем Бор пытался работать с Эрнестом Резерфордом, но не смог — у физиков часто возникали споры. 

Позже Нильс Бор опубликовал статью «О строении атомов и молекул», продолжая изучать особенности атомов. Ученый стал лауреатом Нобелевской премии по физике. 

Во время Второй мировой войны Бору предложили сотрудничать с нацистской Германией. Физик ответил отказом. 

Нильс Бор участвовал в разработке атомной бомбы, но быстро понял, какое опасное изобретение оказалось в его руках. Он много раз встречался с политиками, пытаясь убедить их отказаться от применения ядерного оружия.

Достижения физика:

  • Нильс Бор предложил планетарную модель строения атома;
  • исследовал колебания жидкости;
  • объяснил особенности химических элементов таблицы Менделеева.

Стивен Хокинг (1942 — 2018 гг.)

Стивен Хокинг

Стивен Хокинг — физик-теоретик. Он родился в Англии. Его отец был врачом, а мать — экономистом. 

Любовь к изучению физики проявилась еще в юношестве, поэтому сразу после окончания школы будущий ученый получил место в Оксфордском университете. Докторскую степень физик получил уже в Кембридже. 

Поражение центральной нервной системы привело к параличу и потере речи, но ученый продолжал исследовать Вселенную и черные дыры, несмотря на тяжелую болезнь.

Стивена Хокинга высоко ценят не только в научном сообществе: он писал научно-популярные книги, чтобы люди, далекие от физики и астрономии, поближе познакомились с устройством космоса (например, «Краткая история времени», «Вселенная в двух словах»; для детей — «Джордж и тайна Вселенной»). 

  • Хокинг сформулировал Теорию большого взрыва, с которого началась Вселенная. 
  • Физик доказал, что Большой взрыв должен был начаться с расширения точки с бесконечной плотностью — сингулярности. 
  • Смог применить теорию относительности Эйнштейна к квантовой механике. 
  • «Излучение Хокинга» — ученый доказал, что черные дыры излучают во Вселенную поток элементарных частиц. 

blogArticleAd-image

blogArticleAd-image

Развитие кругозора детей 6-13 лет

Хотите узнать больше интересных фактов о выдающихся ученых и их открытиях? Ждем вас и вашего ребенка на нашем онлайн-курсе «Культурный код» для детей 6-13 лет

узнать подробнее

Новый транспорт, новые возможности

По одной из версий, старт Новому времени дали Великие географические открытия. Появившиеся в 15−16 веках централизованные государства, способные финансировать морские путешествия, развитие рыночной торговли, нужда в перевозке товаров, перенаселение европейских стран — всё это стало предпосылками изучения новых земель, добраться до которых можно было только по воде. Для далёких странствий морякам понадобилась принципиально другая техника.

Люди раннего Нового времени пользовались астролябией — прибором, помогающим определять широту и долготу, — и компасом. Главное достижение в области морского транспорта — эволюция парусов и кораблей. Преодолевать огромные расстояния по воде европейцам помогали каравеллы — обновлённый вариант судна, которое достигало около 30 м в длину. Каравеллы могли перевозить несколько десятков человек и хранить внушительные объёмы провианта. Позже появилось большое многопалубное парусное судно под названием галеон. Такой тип кораблей был лучше приспособлен к океаническим прогулкам.

1.jpg

Реплика каравеллы-редонды первого похода Колумба. (wikipedia.org)

К концу 18-го века появились первые предшественники колёсных пароходов. А в 1807 году американский инженер Роберт Фултон создал пароход «Клермонт». Итогом последующей эволюции транспортного средства длиною в век стал крупнейший корабль Нового времени — печально известный «Титаник». Он вмещал 2439 пассажиров.

Осенью 1825 года была открыта первая общественная железная дорога Стоктон — Дарлингтон. Постепенно поезда связывали города и сёла наиболее развитых стран Европы.

В Новое время зародились основы воздушной техники. Революционным событием стало изобретение аэростата в 18-м веке. Этот аппарат в 1783 году впервые поднял человека в небо. Ко второй половине 19-го столетия аэростаты уже взлетали на 9-километровую высоту. Параллельно продолжались поиски технического решения идеи самолёта, и в декабре 1903 года воздушное судно братьев Райт под названием «Флайер-1» оторвалось от земли.

Промышленная революция — мать заводов и фабрик

Развитие рыночных отношений в период Нового времени привело к появлению предприятий, выпускавших товары в крупных объёмах. В свою очередь, производственные объекты со временем развивались и эволюционировали.

Первые мануфактуры появились в 16-м веке в Италии. Рабочие здесь занимались, в частности, судостроением, сукноделием, шерстоткачеством. Со временем мануфактуры распространились по Европе. Эксплуатация рабочих и тяжёлые условия труда вдохновили философа и экономиста Карла Маркса на публикацию своего главного труда — «Капитала», — с критикой капиталистического строя. В качестве примеров Маркс приводил мануфактуры в Голландии и Англии, где, по мнению философа, царила антигуманность.

Заводы Нового времени.

Заводы Нового времени. Источник: news. sky.com

Уже в 18−19 веках в Европе началась промышленная революция. Этот период ознаменовался переходом от ручного труда к машинному. Крупные частные предприниматели перешли от мануфактур к фабрикам. Заводы, массово выпускавшие продукцию, позволили в разы увеличить производительность. Однако проблема социального неравенства не была решена, революционеры левого толка рубежа 19−20 столетий возлагали на пролетариат большие надежды.

Научные открытия, изменившие мир

Великие географические открытия, расширение списка повседневных интересов, тяга к творчеству и культ человека, развитый в эпоху Возрождения, относительная либерализация в религии — эти и другие факторы усилили в людях интерес к окружающему миру.

Первым научный переворот произвёл польский астроном Николай Коперник, открыто провозгласивший, что учение о неподвижности нашей планеты не является верным. 30 лет Коперник следил за небесными телами. Отсутствие мощного телескопа не помешало учёному сделать вывод: Земля вращается вокруг Солнца и вокруг своей оси. Основные идеи Коперника изложены в труде «О вращении небесных сфер».

Джордано Бруно, продолжавший развивать идеи Коперника, дошёл до мысли о бесконечности Вселенной, состоящей из множества звёзд. За атеистические идеи Бруно сожгли на костре. Идеи Бруно развил Галилео Галилей. Он стал первым учёным, наблюдавшим небо благодаря телескопу. Галилей смог подтвердить учение Коперника при помощи исследований. Также он сформулировал законы падения тел и движения маятника.

Исаак Ньютон разработал зеркальный телескоп, а в труде «Математические начала натуральной философии» он сформулировал основы классической механики. Наиболее известное открытие Ньютона — закон всемирного тяготения, ознаменовавший переход от старого описания Солнечной системы к объяснению законов её движения.

Одной из наиболее значимых фигур в физике позднего Нового времеми стал Альберт Эйнштейн. Хотя потенциал учёного в полной мере раскрылся уже в Новейшее время, его заслуги до 1914 года сложно отрицать. Именно благодаря вкладу Эйнштейна 1905-й вошёл в историю как «год чудес». Тогда физик ввёл формулу соотношения между массой и энергией, сформулированную так: E=mc2. Также в это время учёный опубликовал труды о квантовой теории, броуновском движении и специальной теории относительности.

3.jpg

Дмитрий Менделеев — выдающийся русский химик. (wikipedia.org)

Одним из главных учёных-химиков позднего Нового времени стал Дмитрий Менделеев. Русский учёный вошёл в историю, в первую очередь, благодаря созданию периодической таблицы химических элементов. Также Менделеев разработал гидратную теорию растворов, открыл явление радиоактивности, вывел уравнение идеального газа и создал схему дробной перегонки нефти.

Что нужно для гениального изобретения? Ум, трудолюбие, упорство, а иногда ещё и одна нелепая случайность. Короче говоря, на каждого Ньютона должно найтись своё яблоко, которое сделает его великим.

Караоке

Японец Дайсукэ Иноуэ зарабатывал себе на рис тем, что аккомпанировал посетителям кофейни Utagoe в японском городе Кобе. Главная фишка этой сети кофеен была в том, что посетители не только пили кофе, но и пели популярные песни под живую музыку. Аранжировки Иноуэ японских эстрадных хитов 1960-х (может быть что-то типа «Рюмка сакэ на столе») так полюбились гостям, что они просить музыканта поделится записями для домашних распевок. Тут у Иноуэ над головой загорелась лампочка, и он разработал аппарат, который за 100 иен, а это по меркам конца 1960-х было довольно много, играл записанную заранее минусовку. Высокая цена не остановила путь караоке к вершинам славы.
Но есть у караоке и другая история происхождения. Однажды Иносуэ заболел, перспектива целый вечер сидеть за роялем с температурой его не вдохновляла, и тогда изобретательный японец записал свои самые популярные аранжировки на кассету, и вечером лишь нажимал на кнопку магнитофона по просьбам трудящихся японцев. Этот случай показал Иносуэ, что посетители одинаково задорно поют под живой аккомпанемент и под магнитофонную запись. Как только Дайсукэ поправился, он приступил к разработке караоке-машины. «Караоке» по-японски означает «пустой оркестр».
Интересно, что за своё удивительное изобретение Дайсукэ Иноуэ получил Шнобелевскую премию, которую обычно получают разные фрики от науки. Шнобелевку отцу караоке вручили с формулировкой «за открытие людям нового способа учиться терпимости по отношению друг к другу».

Микроволновая печь


За изобретение микроволновой печи мы должны быть признательны не только инженеру Перси Спенсеру, но и в нужный момент оказавшейся у него в кармане шоколадке.
В 1940-х Спенсер работал над новыми радарами для военных нужд и проводил опыты с магнетронами. После очередного опыта Перси собрался подкрепиться шоколадным батончиком, но нашёл в кармане халата лишь расплавленный горячий шоколад. На следующей же летучке с руководством Спенсер предложил использовать магнетроны для нагревания продуктов. Патент на микроволновую печь был получен в 1946 году, а первые печи высотой два метра и весом в 300 кг поступили в рестораны в 1947 году.

Шоколадная паста


А ведь Спенсер мог бы стать первооткрывателем ещё одного кулинарного шедевра. Случай с шоколадкой для американца был всего лишь наводкой на настоящее изобретение, а для итальянского кондитера Пьетро Ферреро похожая история открыла путь к его главному шедевру.
В 1946 году администрация города Альба заказала Ферреро ко дню города сладости. Пьетро специально к празднику придумал рецепт пирожного из мёда, масла и толчёных орехов. В назначенный день пирожные украсили праздничные столы на улице, но погода в тот день была слишком жаркая даже по итальянским меркам, поэтому к приходу желающих подкрепиться местными сладостями горожан ореховые пирожные растаяли. Супруга Пьетро не растерялась и стала намазывать жидкие пирожные на хлеб. Горожане всё с удовольствием слопали, облизали пальчики и потребовали добавки, так родилась шоколадная паста Ферреро. Позже, когда в послевоенной Италии стали доступны какао-бобы, паста стала шоколадной. В 1963 году сын Пьетро Микеле доработал рецепт и на прилавках появились знакомые нам стеклянные баночки с «Нутеллой» от одной из самых известных в мире кондитерских компаний Ferrero.

Слинки


Пусть детская игрушка слинки и не великое открытие и даже не караоке, но много-много радости детишкам это изобретение всё же принесло и своему появлению на свет тоже обязана случайности. Как и микроволновка, слинки появилась как побочный результат работы военного инженера. В 1943 году Ричард Т. Джеймс работал над созданием пружин, которые бы во время качки стабилизировали различные приборы на военном корабле. Один из опытных образцов Джеймс случайно смахнул со стола, и пружина, которой судьбой была предназначена служба на военных кораблях, зашагала от Джеймса прочь. Эта «походка» пружинки и зародила в голове Джеймса мысли о новой игрушке. Он принёс образец домой и показал детям и жене. Дети тут же стали придумывать с пружинкой разные трюки, а жена покопалась в словаре и нашла слово «slinky», которое означает «гибкий», «изящный». Первая коммерческая партия новых пружинящих игрушек была продана за полтора часа.

Вулканизированная резина


Неуклюжесть очень часто помогала учёным в их труде. Взять к примеру Чарльза Гудиера. В начале XIX века каучук годился только для ластиков и непромокаемых плащей, но Гудиер верил, что каучук способен на большее. В 1839 году Гудиер изобрёл процесс вулканизации, то есть получения резины из каучука. А надо было всего лишь случайно уронить образец смешанного с серой каучука на печку.

Динамит


Некоторые истории из этой подборки можно начинать присказкой «мышка бежала, хвостиком махнула…». У Альфреда Нобеля, именем которого названа главная научная премия мира, «мышка», то есть его собственная рука, опрокинула колбу с нитроглицерином на засыпанный опилками пол лаборатории. Нитроглицерин вещество нестабильное, опасное в обращении, но взрыва не произошло, опилки впитали всё содержимое исторической пробирки. Так и был изобретён динамит. Завёрнутые в промасленную бумагу бруски из пропитанных нитроглицерином опилок можно было относительно спокойно перевозить, поэтому изобретение быстро стало супер популярным. Для надёжного взрывания динамита Нобель изобрёл капсюль-детонатор.
Как видите, яблоко, впрочем как и колба с реагентом, просто так не падают. Обычно они правильно падают после многолетнего труда и сотен неудачных экспериментов.

Пенициллин


Помимо неуклюжести, учёный, желающий сделать великое открытие, должен также быть грязнулей. Александр Флеминг оставил в раковине грязные после экспериментов чашки Петри и ушёл в отпуск, а когда вернулся через несколько недель в свою родню лабораторию и стал наконец-таки мыть чашки, то сделал интересное наблюдение. Одну из чашек с культурой стафилококка заполнили колонии бактерий, но один пятачок бактерии оставили чистым. На этом пятачке была плесень. Так биолог выяснил в 1928 году, что пенициллин может убивать бактерии.

Сахарин


Ещё один великий «грязнуля» не помыл руки и отрыл заменитель сахара. Немецкий химик Константин Фальберг в 1879 году проводил опыты с производными битума. Фальберг был так погружён работой, что забыл помыть руки после опытов, а понял это, когда обычный хлеб за обедом показался ему приторно сладким. Разобравшись, что хлеб приобрёл новый вкус от своих собственных пальцев, на которых остались следы одного их лабораторных опытных образцов, счастливый учёный немедленно помчался назад в лабораторию, что довести открытие до конца.

Пузырчатая упаковка


В 1950-х годах дизайнерам Альфреду Филдингу и Марку Чаваннесу сделали заказ на футуристические обои. Альфред и Марк разработали станок, который превращал две душевые занавески в то, что мы сейчас знаем как один из лучших упаковочных материалов и лучшую антистресс-игрушку. К получившейся пузырчатой плёнке дизайнеры-изобретатели добавили бумажный слой, чтобы можно было клеить обои на стены, и презентовали заказчику. Но заказчик обои не оценил, для него они оказались чересчур футуристическими. Гениальное изобретение уже было на руках у Филдинга и Чаваннеса, оставалось только найти ему применение. Они предложили фермерам делать из плёнки теплицы, но на огородах пузырьки тоже не прижились. Три года изобретатели не могли никому сбагрить свои уникальные обои. И вот однажды Филдинг летел в самолёте и замечтался, глядя в иллюминатор. Облака ему представились пузырьками воздуха, а взлётно-посадочная полоса в его сне наяву покрылась придуманный им пузырчатой плёнкой. Когда самолёт коснулся шасси земли и несколько раз несильно подскочил, сон рассеялся, и Филдинг чётко себе представил, как самолёт отпружинил от пузырьков. Эврика! Плёнка может смягчить удар. Первый крупный конракт Филдинг и Чаваннес заключили с компанией IBM, которая как раз искала нужный материал для безопасной перевозки своих компьютеров.

Стикеры


Спенсер Сильвер хотел изобрести самый прочный в мире клей, склеивающий любые поверхности. Но результат долгих трудов сильно его разочаровал — клей легко приставал к любым поверхностям, но также легко и отрывался от них. Никто не хотел покупать изобретение Сильвера, было просто непонятно, как можно использовать этот странный клей. Созданию стикеров помог случай и коллега Сильвера Арт Фрай. Арт пел в церковном хоре и у него был псалтырь с кучей закладок. Однажды он уронил псалтырь во время репетиции, бумажки-закладки выпали из книги, и вот тогда ему пришла в голову гениальная идея: «А что если намазать клеем Сильвера закладки? Тогда они не будут выпадать, но и бумагу не испортят». Так были придуманы стикеры.

В нашей стране было много выдающихся деятелей, о которых мы, к сожалению, забываем, не говоря уже об открытиях, которые были сделаны русскими учеными и изобретателями. События, перевернувшие историю России, также известны не каждому. Я хочу исправить эту ситуацию и вспомнить самые известные российские изобретения.

1. Самолет — Можайский А.Ф.

Талантливый русский изобретатель Александр Федорович Можайский (1825-1890 гг.) первый в мире создал самолет в натуральную величину, способный поднять в воздух человека. Над решением этой сложной технической задачи до А. Ф. Можайского, как известно, работали люди многих поколений как в России, так и в других странах, шли они разными путями, но никому из них не удавалось довести дело до практического опыта с натурным самолетом. А. Ф. Можайский нашел верный путь к решению этой задачи. Он изучил труды своих предшественников, развил и дополнил их, используя свои теоретические познания и практический опыт. Конечно, не все вопросы удалось ему разрешить, но сделал он, пожалуй, все, что было возможно в то время, несмотря на крайне неблагоприятную для него обстановку: ограниченность материальных и технических возможностей, а также недоверие к его работам со стороны военно-бюрократического аппарата царской России. В этих условиях А. Ф. Можайский сумел найти в себе духовные и физические силы для завершения постройки первого в мире самолета. Это был творческий подвиг, навеки прославивший нашу Родину. К сожалению, сохранившиеся документальные материалы не позволяют в необходимых подробностях дать описание самолета А. Ф. Можайского и его испытаний.

2. Вертолёт – Б.Н. Юрьев.

Борис Николаевич Юрьев — выдающийся ученый-авиатор, действительный член Академии наук СССР, генерал-лейтенант инженерно-технической службы. В 1911 году изобрел автомата перекоса (основной узел современного вертолёта) — устройство, сделавшее возможным постройку вертолётов с характеристиками устойчивости и управляемости, приемлемыми для безопасного пилотирования рядовыми лётчиками. Именно Юрьев проложил дорогу для развития вертолётов.

3. Радиоприёмник — А.С.Попов.

А.С. Попов впервые продемонстрировал действие своего прибора 7 мая 1895г. на заседании Русского физико-химического общества в Петербурге. Этот прибор стал первым в мире радиоприемником, а день 7 мая стал днем рождения радио. И сейчас он ежегодно отмечается в России.

4. Телевизор — Розинг Б.Л.

25 июля 1907 года он подал заявку на изобретение «Способ электрической передачи изображений на расстояния». Развертка луча в трубке производилась магнитными полями, а модуляция сигнала (изменение яркости) с помощью конденсатора, который мог отклонять луч по вертикали, изменяя тем самым число электронов, проходящих на экран через диафрагму. 9 мая 1911 года на заседании Русского технического общества Розинг продемонстрировал передачу телевизионных изображений простых геометрических фигур и приём их с воспроизведением на экране ЭЛТ.

5. Парашют ранцевый — Котельников Г.Е.

В 1911 году русский военный, Котельников, под впечатлением увиденной им на Всероссийском празднике воздухоплавания в 1910 году гибели русского лётчика капитана Л. Мациевича изобрёл принципиально новый парашют РК-1. Парашют Котельникова был компактен. Его купол изготовлен из шёлка, стропы разделялись на 2 группы и крепились к плечевым обхватам подвесной системы. Купол и стропы укладывались в деревянный, а позднее алюминиевый ранец. Позже, в 1923 году Котельников предложил ранец для укладки парашюта, сделанный в виде конверта с сотами для строп. За 1917 год в русской армии было зарегистрировано 65 спусков с парашютами, 36 — для спасения и 29 добровольных. 

6. Атомная электростанция.

Запущена 27 июня 1954 года в Обнинске (тогда поселок Обнинское Калужской области). Была оснащена одним реактором АМ-1 («атом мирный») мощностью 5 МВт.
Реактор Обнинской АЭС, помимо выработки энергии, служил базой для экспериментальных исследований. В настоящее время Обнинская АЭС выведена из эксплуатации. Её реактор был заглушен 29 апреля 2002 года по экономическим причинам.

7. Периодическая таблица химических элементов – Менделеев Д.И.

Периодическая система химических элементов (таблица Менделеева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы).

8. Лазер

Прототип лазера мазеры были сделаны в 1953—1954 гг. Н. Г. Басовым и А. М. Прохоровым, а также независимо от них американцем Ч. Таунсом и его сотрудниками. В отличие от квантовых генераторов Басова и Прохорова, которые нашли выход в использовании более чем двух энергетических уровней, мазер Таунса не мог работать в постоянном режиме. В 1964 году Басов, Прохоров и Таунс получили Нобелевскую премию по физике «За основополагающую работу в области квантовой электроники, позволившую создать генераторы и усилители, основанные на принципе мазера и лазера».

9. Бодибилдинг

Русский атлет Евгении Сандов, название его книги «строительство тела» – bodybuilding было дословно переведино на англ. язык.

10. Водородная бомба – Сахаров А.Д. 

Андрей Дмитриевич Сахаров (21 мая 1921, Москва — 14 декабря 1989, Москва) — советский физик, академик АН СССР и политический деятель, диссидент и правозащитник, один из создателей первой советской водородной бомбы. Лауреат Нобелевской премии мира за 1975 год.

11. Первый искуственный спутник земли, первый космонавт и т.д.

 12. Гипс — Н. И. Пирогов

Пирогов впервые в истории мировой медицины применил гипсовую повязку, которая позволила ускорить процесс заживления переломов и избавила многих солдат и офицеров от уродливого искривления конечностей. Во время осады Севастополя, для ухода за ранеными, Пирогов воспользовался помощью сестёр милосердия, часть которых приехала на фронт из Петербурга. Это тоже было нововведение по тем временам.

13. Военная медицина

Пирогов изобрел этапность оказания военной медицинской службы, а также методы исследования анатомии человека. В частности он является основоположником топографической анатомии.

14. Антарктида

Антарктида была открыта 16 (28 января) 1820 года русской экспедицией под руководством Фаддея Беллинсгаузена и Михаила Лазарева, которые на шлюпах «Восток» и «Мирный» подошли к ней в точке 69°21? ю. ш. 2°14? з. д. (G) (район современного шельфового ледника Беллинсгаузена).

15. Иммунитет – Мечников И.И.

Обнаружив в 1882 явления фагоцитоза (о чём доложил в 1883 на 7-м съезде рус. естествоиспытателей и врачей в Одессе), разработал на их основе сравнительную патологию воспаления (1892), а в дальнейшем — фагоцитарную теорию иммунитета («Невосприимчивость в инфекционных болезнях», 1901 — Нобелевская премия, 1908, совместно с П. Эрлихом).

16. Модель горячей Вселенной

Основная космологическая модель, в которой рассмотрение эволюции Вселенной начинается с состояния плотной горячей плазмы, состоящей из протонов, электронов и фотонов. Впервые модель горячей вселенной рассматривалась в 1947 Георгием Гамовым. Происхождение элементарных частиц в модели горячей вселенной с конца 1970-х описывают с помощью спонтанного нарушения симметрии. Многие недостатки модели горячей вселенной были решены в 1980-х в результате построения теории инфляции.

17. Тетрис

Самая извесная компьютерная игра, изобретена Алексеем Пажитновым в 1985 году.

18. Первый автомат — В.Г.Фёдоров 

Автоматический карабин, предназначенный для стрельбы очередями с рук. В.Г.Фёдоров. За рубежом этот вид оружия именуется «штурмовой винтовкой».

1913 год – опытный образец под специальный промежуточный по мощности патрон(между пистолетным и винтовочным).
1916 год – принятие на вооружение (под японский винтовочный патрон) и первое боевое применение (Румынский фронт).

19. Лампа накаливания – лампа Лодыгина А.Н.

У электрической лампочки нет одного-единственного изобретателя. История лампочки представляет собой целую цепь открытий, сделанных разными людьми в разное время. Однако заслуги Лодыгина в создании ламп накаливания особенно велики. Лодыгин первым предложил применять в лампах вольфрамовые нити (в современных электрических лампочках нити накала именно из вольфрама) и закручивать нить накаливания в форме спирали. Также Лодыгин первым стал откачивать из ламп воздух, чем увеличил их срок службы во много раз. Другим изобретением Лодыгина, направленным на увеличение срока службы ламп, было наполнение их инертным газом.

20. Водолазный аппарат

В 1871 году Лодыгин создал проект автономного водолазного скафандра с использованием газовой смеси, состоящей из кислорода и водорода. Кислород должен был вырабатываться из воды путем электролиза.

21. Индукционная печь

19 октября 1909 года Лодыгин получил привилегию (патент) на индукционную печь.

22. Гусеница

Первый гусеничный движитель (без механического привода) был предложен в 1837 г. штабс-капитаном Д.Загряжским. Его гусеничный движитель строился на двух колесах, обведённых железной цепью. А в 1879 г. русский изобретатель Ф.Блинов получил патент на созданный им «гусеничный ход» для трактора. Он его называл «паровоз для грунтовых дорог»

23. Кабельная телеграфная линия

Линия Петербург-Царское Село была построена в 40-егг. XIX века и имела протяженность 25 км.(Б.Якоби)

24. Синтетический каучук из нефти – Б.Бызов

 25. Оптический прицел

«Инструмент математический с перспективною зрительною трубкою, с протчими к тому принадлежностями и ватерпасом для скорого навождения из батареи или с грунта земли по показанному месту в цель горизонтально и по олевации».  Андрей Константинович НАРТОВ (1693-1756).

26. Велосипед

В 1801 г. уральский мастер Артамонов решил задачу облегчения веса повозки за счет сокращения числа колес с четырех до двух. Таким образом, Артамонов создал первый в мире педальный самокат прообраз будущего велосипеда.

27. Электросварка

Способ электрической сварки металлов придумал и впервые применил в 1882 году русский изобретатель Николай Николаевич Бенардос (1842 — 1905). «Сшивание» металла электрическим швом он назвал «электрогефестом».

28. Персональный компьютер

Первый в мире персональный компьютер был изобретен не американской фирмой «Эппл компьютерз» и не в 1975 году, а в СССР в 1968 году советским конструктором из Омска Арсением Анатольевичем Гороховым (род. 1935). В авторском свидетельстве № 383005 подробно описан «программирующий прибор», как его тогда назвал изобретатель. На промышленный образец денег не дали. Изобретателя попросили немного подождать. Он и подождал, пока в очередной раз за рубежом не изобрели отечественный «велосипед».

29. Цифровые технологии.

Котельников — отец всех цифровых технологий в передаче данных.

30. Электродвигатель – Б.Якоби.

 31. Электромобиль

Двухместный электромобиль И.Романова образца 1899 г. изменял скорость движения в девяти градациях – от 1,6 км в час до максимальной в 37,4 км в час

32. Бомбардировщик

Четырехмоторный самолет «Русский витязь» И.Сикорский.

 33. Автомат Калашникова

Символ свободы и борьбы с угнетателями.

Просмотров всего: 42 017 и сегодня: 1

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Рассказы про осеннее утро
  • Рассказы про настоящую дружбу
  • Рассказы про органы чувств для детей
  • Рассказы про насекомых для дошкольников
  • Рассказы про ольгу прокофьевну набекрень

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии