Рассказ о значении атмосферы

Атмосфера, которую мы называем просто воздухом, делает возможной жизнь на Земле. Она состоит из различных газов, имеет определенные размеры и свойства. Рассмотрим структуру земной атмосферы, явления, которые в ней происходят, а также газовые оболочки других планет.

Что такое атмосфера?

Атмосфера – это газовая оболочка небесного (или астрономического) тела, которая удерживается вокруг него благодаря действию гравитационных сил. Она есть не только у нашей планеты, а и у большинства массивных космических тел.

Атмосфера Земли

Атмосфера Земли

Ученые не проводят четких границ между атмосферой и межпланетной областью. Поэтому к атмосфере обычно относят то пространство, газовый состав которого вращается вместе с небесным телом. Толщина его может быть разной.

Состав и границы

Оболочка, исходя из названия, состоит из смеси определенных газов. Стоит отметить, что ее изначальный химический состав определяется свойствами Солнца, когда планета находится на начальной стадии формирования. Затем наличие и количество тех или иных веществ меняется вследствие эволюции.

Атмосфера – что такое, состав, из каких слоев состоит, образование, значение, фото и видео

Химический состав атмосферы

В состав атмосферы Земли входят преимущественно газы, а также разные примеси, например, частицы воды, пыль, лед, продукты горения и др. На 78% оболочка состоит из азота, на 21% – из кислорода. Среди прочих компонентов присутствуют аргон, углекислый газ, гелий, водород и др.

Интересный факт: если содержание большинства компонентов атмосферы Земли не меняется в течение многих лет, то концентрация углекислого газа постепенно растет, начиная с 19-го века. В настоящее время его показатель – около 0,04%.

Несмотря на плавный переход в космическое пространство, ученые утверждают, что заканчиваются границы оболочки в экзосфере (примерная высота – 500-1000 км). В авиации и космонавтике имеются свои представления о том, где заканчивается атмосфера.

Так, Международная авиационная федерация называет пограничной отметкой высоту в 100 км. Самолеты не поднимаются выше данного предела. А космические корабли, шаттлы, достигая высоты 122 км, переключаются на аэродинамическое управление. Поэтому NASA предлагает такую отметку в качестве границы.

Слои атмосферы Земли в порядке возрастания

Атмосфера – что такое, состав, из каких слоев состоит, образование, значение, фото и видео

Основные слои атмосферы

Ученые выделяют основные и дополнительные, пограничные слои в составе атмосферы. В порядке возрастания они располагаются следующим образом:

  • планетарный пограничный слой;
  • тропосфера;
  • тропопауза;
  • стратосфера;
  • стратопауза;
  • мезосфера;
  • мезопауза;
  • линия Кармана;
  • термосфера;
  • термопауза;
  • экзосфера.

Планетарный пограничный слой

Самый нижний шар тропосферы. Его толщина составляет 1-2 км. Состояние атмосферы в этой области и различные ее изменения напрямую зависят от земной поверхности или, как ее еще называют, подстилающей. Данный слой также разделяют на 3 дополнительных (по возрастанию):

  • слой шероховатости;
  • приземный;
  • Экмана.

Тропосфера

Тропосфера – первый из базовых слоев. Располагается на высоте от 6 до 20 км (зависит от широты: ниже в полярных, выше – в тропических широтах). В целом летом тропосфера находится выше, чем зимой.

Тропосфера - область образования облаков

Тропосфера – область образования облаков

С этим шаром мы знакомы лучше всего, поскольку именно здесь формируются погодные условия: атмосферные фронты, облака, циклоны, антициклоны и др. Состав тропосферы неоднородный. В ней содержится около 80% атмосферного воздуха, 90% водяного пара. Также здесь возникают такие явления, как конвекция и турбулентность.

Интересный факт: при подъеме на каждые 100 метров температура в тропосфере понижается приблизительно на 0,65 градуса.

Тропопауза

Служит промежуточным слоем между тропосферой и стратосферой. В данной области понижение температуры прекращается. Наличие переходного шара было установлено французским метеорологом Леоном де Бором в 1902 г.

Толщина тропопаузы варьируется от нескольких сотен метров до пары километров. Встречаются ее разрывы в некоторых областях, а также повторные переходные слои.

Стратосфера

Следующий базовый слой – стратосфера, расположенная на высоте 11-50 км. Условия в этом шаре постоянно меняются с высотой. Например, в промежутке 11-25 км температура начинает повышаться практически незначительно. Выше 25 км (до 40 км) она резко увеличивается до 0℃, а далее остается относительно стабильной.

С стратосфере располагается озоновый слой, который защищает Землю от УФ излучения

С стратосфере располагается озоновый слой, который защищает Землю от УФ излучения

В отличие от тропосферы, местная среда более однородная. Водяные пары в ней практически отсутствуют. Именно здесь располагается озоновый слой. Его примерная высота от 15-20 км и до 55-60. Озон активнее всего формируется на 30-километровой высоте. Северное сияние, зарница и другие явления, связанные со светом, происходят в стратосфере.

Интересный факт: осваивать стратосферу люди начали в 30-х годах. В 1931 О. Пикар и П. Кипфер поднялись на высоту 16,2 км на первом стратостате – FNRS-1. Вдохновившись этим достижением, советские исследователи построили собственные стратостаты. В 1933 «СССР-1» поднялся на 19 км вверх, тем самым установив новый рекорд.

Стратопауза

Пограничный слой между мезосферой и стратосферой. По отношению к уровню моря стратопауза находится на высоте 50-55 км. Температура здесь равна 0℃. Там, где показатель температуры падает, уже начинается мезосфера. Такой пограничный слой имеется и на других планетах с атмосферой.

Мезосфера

Начинается выше 50 км и заканчивается на высоте примерно 80-90 км. Чем выше, тем сильнее опускается температура. Холоднее всего рядом со следующим пограничным слоем – около -80℃.

Серебристые облака

Серебристые облака

Мезосфера состоит на 80% из азота и на 20% из кислорода. Метеорные тела, попадая в это пространство, светятся и сгорают. Также здесь иногда формируются серебристые облака. Это очень редкое явление, возникающее в летний период из-за низких температур.

Мезопауза

Служит границей между мезосферой и термосферой. В мезопаузе температура доходит до минимума – около -100℃. Примерная высота расположения слоя – 80-90 км. Он также является границей области, в которой происходит активное поглощение ультрафиолетового солнечного излучения. Как и стратопауза, встречается на других планетах.

Линия Кармана

Еще выше мезопаузы проходит линия Кармана (условная) – на высоте 100 км, согласно данным Международной авиационной федерации. Она служит границей между земной атмосферой и открытым космосом, хотя воздушная оболочка здесь еще не заканчивается. Также на данной высоте заканчиваются границы всех государств.

Интересный факт: впервые линию Кармана преодолела немецкая ракета «Фау-2» в 1944. А первыми млекопитающими, которые успешно пересекли линию и вернулись обратно, стали собаки с кличками Дезик и Цыган (СССР, 1951 год).

Термосфера

Начинается на высоте около 90 км и заканчивается ближе к 800 км. Характеризуется интенсивным возрастанием температуры с высотой (до 300 км, затем остается стабильно высокой). Но ввиду неоднородной солнечной активности, поглощения УФ излучения, ее показатель колеблется в пределах 200-2000 К.

"Спутник-1" - первый в мире искусственный спутник (СССР, 1957)

“Спутник-1” – первый в мире искусственный спутник (СССР, 1957)

Здесь летают беспилотные спутники, пилотируемые космические аппараты. Так как воздух в термосфере сильно разрежен, высокая температура не наносит летательным аппаратам вреда. Также на данной высоте наблюдается полярное сияние.

Термопауза

Находится на высоте 400-800 км, в зависимости от солнечной активности. Для данного слоя атмосферы характерна относительно стабильная температура. Она может колебаться в пределах 500-2000 К. Постоянная температура объясняется тем, что на этой высоте нет других источников энергии, кроме Солнца.

Экзосфера

Внешняя часть атмосферы, расположенная на высоте около 500-1000 км. Состоит из разреженного газа (плазмы), который рассеивается в космическом пространстве. Приближаясь к отметке в 2000 км, экзосфера постепенно становится ближнекосмическим вакуумом.

Сколько весит атмосфера?

Хоть мы и не ощущаем воздух, он состоит из молекул, как любое тело

Хоть мы и не ощущаем воздух, он состоит из молекул, как любое тело

Весь воздух на нашей планете весит (5,1–5,3) х1018 кг. При этом он состоит непосредственно из сухого воздуха, а также из водяных паров. Человечество узнало о том, что воздух не невесомый, благодаря опыту Эванджелиста Торричелли в 1643 году с ртутью и стеклянной емкостью. Он состоит из атомов и молекул, как и любые тела.

Физические свойства. Атмосферное давление

Основные свойства атмосферы:

  • плотность воздуха над поверхностью моря – 1,2 кг/м3;
  • давление при нулевой температуре – 101,325 кПа;
  • масса водяных паров в составе воздуха – 1,27х1016 кг.

Атмосферное давление - сила, с которой вся газовая оболочка воздействует на поверхность

Атмосферное давление – сила, с которой вся газовая оболочка воздействует на поверхность

Атмосферное давление, как одно из свойств воздушной оболочки, заслуживает особого внимания. Это сила, с которой весь воздух действует на поверхность Земли, а также все расположенные на ней объекты.

Так как воздух имеет существенный вес, на него действует гравитационная сила. За счет этого и образуется давление. Его показатель нестабильный по нескольким причинам. Например, один из факторов состоит в том, что масса воздуха вокруг планеты всюду разная. На это влияет атмосферная циркуляция.

Также давление зависит от состава атмосферы, ведь у каждого газа своя плотность. С высотой слой атмосферы становится все тоньше, снижается его плотность и падает давление.

Как образовалась атмосфера?

Согласно самой распространенной теории, земная атмосфера находилась в 3-х разных фазах. Изначально она представляла собой смесь гелия и водорода – легких газов. На этом этапе атмосферу называют первичной.

Затем в составе оболочки появились новые газы: аммиак, пары воды, углекислый газ. Их накоплению поспособствовала высокая вулканическая активность. Это вторичная атмосфера.

Кислородная катастрофа

Кислородная катастрофа

Третичная атмосфера появилась в результате нескольких процессов. Во-первых, в ее пределах происходили различные химические реакции, вызванные грозами, УФ излучением и прочими явлениями.

Во-вторых, если на первом этапе оболочка захватывала легкие газы из космического пространства, то теперь они наоборот начали улетучиваться. Таким образом, в составе стало больше углекислого газа, азота и меньше водорода.

Интересный факт: ученые считают, что более 2 миллиардов лет назад на Земле произошла кислородная катастрофа. В результате сложных процессов кислород начал накапливаться в атмосфере. Это привело к развитию аэробных организмов и резкому изменению состава атмосферы.

Значение атмосферы

Без воздушной оболочки на нашей планете не было бы живых организмов. От нее и связанных процессов напрямую зависит органическая жизнь. Наиболее важными компонентами атмосферы являются кислород, водяной пар, азот, озон и углекислый газ.

Кислород является неотъемлемой частью жизни на Земле

Кислород является неотъемлемой частью жизни на Земле

Значение атмосферных газов:

  1. Кислород – обеспечивает существование аэробных организмов за счет окисления органических веществ и образования энергии.
  2. Углекислый газ – поглощается растениями, которые участвуют в процессе фотосинтеза и продуцируют органические вещества.
  3. Азот – требуется для питания растений.
  4. Озон – поглощает ультрафиолетовое излучение и защищает живые организмы от солнечной радиации.
  5. Водяной пар – конденсируется, превращается в облака, способствует выпадению осадков.

Какие природные явления происходят в атмосфере?

Все природные явления, происходящие в атмосфере, можно разделить на 5 категорий:

  • осадки (гидрометеоры);
  • оптические явления;
  • литометеоры;
  • электрические явления;
  • остальные явления.

Все виды выпадающих осадков называются гидрометеорами. Дожди, снегопады, град возникают из-за того, что в воздухе может находиться ограниченное количество водяного пара.

Образование осадков

Образование осадков

При этом охлаждение ненасыщенного воздуха становится причиной его перенасыщения. В результате частицы воды конденсируются и выпадают на поверхность. В эту же группу относят осадки, конденсирующиеся на поверхности (туман, гололед, иней, роса и др.).

К оптическим атмосферным явлениям относится радуга, мираж, заря, зеленый луч и др. Полярное сияние не входит в данную категорию, так как имеет другую природу происхождения.

Самым известным явлением считается радуга. Она возникает вследствие преломления солнечного света атмосферой. Белый свет состоит из множества волн, а из-за преломления он раскладывается на несколько разноцветных лучей.

Двойная радуга

Двойная радуга

Зеленый луч возникает в момент восхода или захода солнца при условии открытого горизонта и отсутствия облаков. Причина явления также кроется в преломлении солнечных лучей. Но, в отличие от радуги, здесь лучи накладываются друг на друга и в течение нескольких секунд можно увидеть зеленый луч или верхнюю часть солнечного диска.

Зеленый луч

Зеленый луч

Разные виды миражей происходят, когда свет преломляется на границе между воздушными слоями с разной температурой и плотностью. При этом можно увидеть реальный объект, расположенный вдали, и его отражение в атмосфере.

Мираж в пустыне

Мираж в пустыне

Заря бывает утренней и вечерней. Так называют свечение неба, когда солнце восходит и заходит за горизонт. Возникает заря из-за отражения лучей света от атмосферных слоев. Она постепенно меняет цвета в зависимости от положения солнца.

Вечерняя заря

Вечерняя заря

Третья категория литометеоров представлена явлениями, которые связаны с мелкими частицами, например, песком, пылью. Сюда относятся песчаные бури, пыльные бури, пыльная мгла и др. Данные явления свойственны пустынным территориям.

Песчаная буря

Песчаная буря

К электрическим явлениям относятся молнии, грозы, полярное сияние. Грозы сопровождаются молниями и громом. При этом электрические разряды возникают внутри облаков либо между землей и облаками. Сюда же относится шаровая молния, природа которой все еще не изучена.

Полярное сияние (северное и южное) образуется в верхних слоях атмосферы, расположенных в зонах вокруг магнитных полюсов Земли. Мы видим свечение вследствие взаимодействия слоев атмосферы с ионизированными частицами солнечного ветра.

Стив - разновидность полярного сияния. Открыта в 2017 году

Стив – разновидность полярного сияния в виде фиолетового луча. Открыта в 2017 году

Интересный факт: полярное сияние бывает и на других планетах. Оно было обнаружено на Венере, Марсе, Сатурне, Юпитере, Уране, Нептуне. Ученые фиксируют эти явления при помощи внеатмосферных телескопов (например «Хаббл»).

В пятую категорию входят все те явления, которые невозможно отнести в четыре предыдущие. В частности речь идет об ураганах, шквалах, смерчах – то есть ветровых явлениях.

Влияние человека на атмосферу

Человек воздействует на атмосферу преимущественно за счет своей хозяйственной деятельности. Причем влияние это носит негативный характер. Например, за пару сотен лет количество углекислого газа в воздушной оболочке увеличилось с 2,86 х 10-2 до 3,8 х 10-2. Это вызвано в основном уничтожением лесов, сжиганием углеродного топлива (нефти, угля, газа и т.д.).

Промышленность наносит наибольший вред атмосфере

Промышленность наносит наибольший вред атмосфере

Возросло также количество метана в результате нефте- и газодобычи. А фреонов в составе атмосферы почти не наблюдалось до середины XX века. Все эти вещества разрушают озоновый слой, способствуют развитию парникового эффекта, глобальному потеплению.

Кроме того, человек воздействует на естественные процессы в атмосфере путем изменения погоды: рассеивания облаков, туманов, искусственного увеличения осадков и др.

Изучение атмосферы

На всех континентах нашей планеты, а также на многих островах расположены постоянно активные метеорологические станции, посты. С их помощью ведется непрекращающееся наблюдение за атмосферой и процессами, которые в ней происходят.

Метеорологическая станция

Метеорологическая станция

Специалисты собирают данные о состоянии воздуха (влажности, температуре), осадках, облачности, ветре, атмосферном давлении и т.п. На актинометрических станциях наблюдают за солнечной радиацией.

Также исследуются различные группы атмосферных явлений, описанные ранее, измеряется химический состав воздуха. А на аэрологических станциях проводятся измерения на большой высоте – до 35 км.

Специалисты ведут наблюдения, как на суше, так и в океане, где располагаются так называемые «суда погоды». Постепенно возрастает объем данных, получаемых с метеорологических спутников. Специальные приборы делают снимки облаков, измеряют солнечную радиацию (микроволновую, ультрафиолетовую, инфракрасную).

Загрязнение земной атмосферы

Воздух загрязняется естественным и антропогенным (из-за человеческой деятельности) образом. Загрязнение может быть физическим (или механическим), химическим и биологическим. Основные загрязнители атмосферы:

  1. Угарный газ (CO). Оксид углерода вырабатывается при сгорании ископаемых видов топлива. Вреден для здоровья, так как перекрывает доступ кислорода в кровь.
  2. Углекислый газ (CO2). Продукт окисления углерода, парниковый газ.
  3. Диоксид серы (SO2). Образуется при сгорании топлива с содержанием серы (уголь), во время переработки сернистой руды. Ежегодно в атмосферу попадает около 190 миллионов тонн. Провоцирует выпадение кислотных дождей.
  4. Озон (О3). Считается самым токсичным для человека среди всех газов. Речь идет о соединениях, находящихся в нижних слоях атмосферы.
  5. Оксиды азота. Образуются в ходе процессов горения. Также источником загрязнения являются производства удобрений, кислот и прочих химикатов. В воздух поступает около 65 миллионов тонн ежегодно. Большая часть приходится на транспорт.
  6. Свинец. Токсичный металл, который попадает в атмосферу с выхлопами транспорта, а также из широкого применения в промышленности.
  7. Углеводороды. Большая группа веществ, которые содержатся в химических жидкостях, растворителях, бензине и т.п.

Загрязнение атмосферы углекислым газом

Загрязнение атмосферы углекислым газом

Также воздух загрязняется в существенной мере промышленной пылью и аэрозолями, источниками которых тоже является деятельность человека.

Атмосферы других планет

На других планетах также есть газовые оболочки, однако они существенно отличаются от земной атмосферы по составу и свойствам.

Атмосфера Венеры состоит из углекислого газа и азота. Плотность ее намного выше, а температура близится к 500℃. Облака образованы сернистым газом и кислотой. Присутствует парниковый эффект.

Глобальная пылевая буря на Марсе

Глобальная пылевая буря на Марсе

Атмосфера Меркурия разреженная – давление в 5 х 1011 ниже, чем на Земле. Ее составляющие рассеиваются в космическом пространстве из-за недостатка гравитационной силы и магнитного поля.

Газовая оболочка Марса состоит, преимущественно, из углекислого газа. Она в 200 раз меньше земной, а давление ниже (примерно, как на высоте 35 км). На Марсе бывают осадки в виде тумана, дождя, снега. Случаются полярные сияния, пылевые бури.

Интересный факт: атмосфера есть и у Луны. Она почти не оказывает влияния на спутник из-за разреженности, низкого давления. В составе обнаружены водород, гелий, неон и другие газы.

Большое красное пятно на Юпитере

Большое красное пятно на Юпитере

У Юпитера самая крупная атмосфера среди других планет Солнечной системы. Основу состава представляют водород и гелий, как и химический состав самой планеты. Газовая оболочка тоже состоит из нескольких слоев. Интерес ученых вызывает Большое красное пятно – атмосферный вихрь, самый крупный в нашей Солнечной системе.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Содержание

  1. Какие газы образуют атмосферный воздух?
  2. Польза воздуха для живых организмов
  3. Какими физическими свойствами обладает воздух?
  4. Воздух – друг человека
  5. Подведение итогов

Воздух – пространство, окружающее поверхность планеты Земля. Он представляет собой смесь 9 основных газов, которые вместе образуют атмосферу, необходимую для существования живых организмов.

Какие газы образуют атмосферный воздух?

Как уже было сказано, состав атмосферного воздуха неоднородный – он представляет собой смесь различных газов, которые невозможно увидеть или потрогать. Вот некоторые из них:

  • Азот;
  • Кислород;
  • Углекислый газ.

Азот и кислород самые главные газы в смеси воздуха, они занимают большую его часть. Стоит отметить, что именно азот чаще всего можно встретить на нашей планете, а кроме того он широко распространен на Уране, Нептуне, Плутоне и даже в межзвездном пространстве.

Кислород занимает второе место по значимости после Азота. Интересный факт об этом газе: кислород в чистом виде является ядом, но при этом его недостаток тоже плохо влияет на здоровье. В составе воздуха количество кислорода именно такое, какое нужно для комфортной жизни всех организмов на нашей планете.

Остальные газы занимают совсем небольшое место в составе атмосферного воздуха, но все же они необходимы. Его неотъемлемой частью являются также водяные пары и частицы дыма, микробы и пыль, различные соли и пыльца растений.

Польза воздуха для живых организмов

Воздух необходим для жизни всех организмов планеты Земля, в том числе и для людей. За один день человек совершает 20 тысяч вздохов и столько же выдохов. При вздохе происходит насыщение организма кислородом. Так, с помощью крови он быстро распространяется по всему телу и дает каждой клеточке необходимую для работы энергию. После этого уже переработанный кислород выдыхается человеком в атмосферу, но уже в качестве углекислого газа. Благодаря этому процессу происходит обмен тепла между телом человека и окружающей средой.

Воздух необходим и для жизни животных, ведь от него зависит их рост и развитие, пол и размер, даже возраст и ежедневная активность. Животные очень остро реагируют на недостаток кислорода: у них учащается дыхание и ускоряется ток крови, при этом в их организмах замедляются жизненно важные процессы. Все это приводит к появлению у животных беспокойства и серьезных заболеваний.

Воздух является неотъемлемой частью жизни и для растений. Для дыхания им также необходим кислород, а вот для питания – углекислый газ. Без кислорода растения не смогли бы прорастать из земли. Этот элемент необходим всему организму: корням, стеблям и листьям. А количество углекислого газа напрямую влияет на качество жизни растения – чем его больше, тем лучше.

Немаловажно для растений и движение воздушных потоков в атмосфере. Если воздух движется вертикально, то он способствует распространению семян, пыльцы и создает комфортную температуру. А вот если направление воздуха горизонтальное, то растения начнут сохнуть и вянуть.

Таким образом, можно смело утверждать, что воздух является жизненно необходимым элементом для людей, животных и растений. Особенно важно его количество и чистота.

Какими физическими свойствами обладает воздух?

Итак, атмосферный воздух состоит из смесей более 9 газов, основными из которых являются Азот и Кислород. Его невозможно увидеть, потрогать или понюхать, но все же он обладает некоторыми физическими свойствами.

Например, атмосферный воздух плохо проводит тепло и хорошо пропускает солнечные лучи. Дело в том, что сам по себе воздух прозрачен и поэтому тепло солнечного света распространяется не на него, а на все видимые предметы, которые он окружает.

Воздух также занимает пространство, в котором он находится. Это легко доказать с помощью эксперимента в домашних условиях. Стоит лишь набрать в небольшую емкость воду и опустить в нее стакан вверх дном. При погружении таким образом стакана в жидкость можно почувствовать небольшое сопротивление. Оно возникает из-за того, что вода не может заполнить пространство, которое занимает воздух.

Еще воздух имеет вес или, говоря научным языком, массу. Такое свойство означает, что он оказывает давление на все предметы, которые окружает. Например, как выяснили ученые, давление атмосферы Земли на человека равняется 15 тоннам (вес примерно 3 грузовых автомобилей). Однако и в организме человека есть воздух, который изнутри давит с точно такой же силой. Благодаря этому внешнее и внутреннее давление уравновешивается и человек не ощущает на себе тяжелый вес атмосферы.

Кроме того, воздух обладает свойствами упругости: как пружина, он может сжиматься, а после принимать изначальную форму. Подобный эффект наблюдается и при нагреве/охлаждении воздуха: при повышении температуры воздух расширяется и поднимается, а при понижении наоборот сжимается и опускается.

Воздух – друг человека

В повседневной жизни люди часто используют изобретения, которые работают благодаря физическим свойствам атмосферного воздуха. Например, в древности его использовали в мореплавании: ветер надувал паруса и корабли могли двигаться в нужном направлении. С давних пор люди начали строить и ветряные мельницы, принцип работы которых заключается во вращении лопастей благодаря потокам атмосферного воздуха.

Физические свойства воздуха активно применяются и в современной промышленности. Хорошим доказательством этого служит такое изобретение, как водолазный колокол, который позволяет выполнять различные работы под водой. Колокол опускают в воду, но благодаря сопротивлению воздуха в нем всегда остается кислород, как в том эксперименте про стакан, о котором говорилось ранее. Это свойство позволяет человеку опускаться на глубину без специального снаряжения и при том совершенно безопасно для здоровья. Такая технология часто применяется для ремонта мостов, осмотра и починки морских и речных судов, а также для помощи водолазам в поисках на большой глубине.

В настоящее время человечество нашло множество применений воздуха для своей повседневной жизни. Так им накачивают шины, моют автомобили, очищают помещения и одежду от пыли и мелких частиц грязи.

Подведение итогов

Подводя итог, об атмосферном воздухе можно сказать следующее: он необходим для жизни всех организмов планеты Земля и состоит более чем из 9 газов, а также обладает многими физическими свойствами и широко применяется людьми в повседневной жизни.

Гугломаг

Гугломаг

Спрашивай! Не стесняйся!

Задать вопрос

Не все нашли? Используйте поиск по сайту

Атмосфера — это газовая оболочка небесных тел. Она есть не только у Земли, но и у многих других крупных космических объектов, например у Солнца. У атмосферы нет видимых границ, отделяющих ее от межпланетного пространства, но она вращается вместе с астрономическим телом, удерживаемая силой гравитации.

Рассмотрим его на примере нашей планеты. Атмосфера защищает все живое от вредного ультрафиолетового излучения. Также в ней сгорают падающие метеориты: до Земли долетает лишь космическая пыль. А если бы не парниковый эффект (нагрев нижних слоев атмосферы), средняя температура воздуха за окном опустилась бы на 20, а то и на 30 °C.

Среди всех небесных тел Солнечной системы только в составе земной атмосферы есть кислород, необходимый для жизни большинства организмов. Кроме того, в газовой оболочке Земли образуются осадки, подпитывающие реки и водоемы.

Газовая оболочка Земли на 78% состоит из азота (N2) и на 21% — из кислорода (O2). Объем остальных газов — озона, метана, аргона, радона, углекислого газа, гелия, неона, криптона, водорода и закиси азота — составляет всего 1%.

Также в атмосфере есть частицы, находящиеся во взвешенном состоянии, в том числе оксиды металлов, минералы и сажа. Они попадают туда как в результате естественных процессов, например выветривания горных пород, так и работы производств, автомобильных выхлопов, добычи полезных ископаемых и так далее.

Фото: denizunlusu / iStock

Из-за увеличения выбросов закиси азота, углекислого газа, метана и других парниковых газов состав земной атмосферы изменяется, а средняя температура на планете выросла на 1,1 °C с конца XIX века. Ученые прогнозируют, что глобальное потепление продолжится, если не снизить темпы загрязнения воздуха.

Из-за наклона земной оси (около 23,44 градуса от перпендикуляра к земной орбите) солнечные лучи распределяются неравномерно по поверхности нашей планеты. Области со схожим климатом образуют климатические пояса: арктический, тропический, экваториальный, умеренный и другие.

Климат — это погодные условия, повторяющиеся в определенной местности в течение десятков и сотен лет. На его формирование влияет несколько факторов:

Географическая широта. Количество тепла, попадающее на поверхность Земли, зависит от того, под каким углом падают лучи солнца. Он равен 90 °C в тропиках и уменьшается по направлению к полюсам. Самая низкая температура (до −89,2 °C) зафиксирована в Антарктиде. А самым жарким местом на Земле считается пустыня Деште-Лут в Иране (до 71 °C).

Близость к морям и океанам. Вода медленнее нагревается и остывает. Поэтому в прибрежных регионах мягкие зимы и умеренно теплое лето, нет больших годовых и суточных колебаний температуры. Близость к морю также обеспечивает больший объем осадков.

Ветры, которые могут быть постоянными (не меняющими направления), сезонными и местными (циркулирующими на определенной территории). Они переносят влажный или сухой воздух.

Океанические течения. Теплые течения прогревают воздух — как Гольфстрим в Северном полушарии, а холодные делают климат более суровым, как течение Западных Ветров в Южном полушарии.

Рельеф. Вершины высоких гор, покрытые льдом и снегом, отражают большое количество солнечной энергии обратно в атмосферу. Кроме того, они сдерживают перемещение воздушных масс. Поэтому на Земле немало мест, где выпадает слишком много или слишком мало осадков. Например, засушливый климат Центральной Азии связан с тем, что поблизости находится много высоких гор.

Земная атмосфера состоит из нескольких слоев: более плотные притягиваются к поверхности планеты силой гравитации.

Это нижний слой атмосферы, содержащий около 80% воздуха. Верхний предел тропосферы находится на высоте от 7 до 20 км. По мере удаления от Земли она становится более разреженной, температура ее понижается, достигая минимального значения −56 °C. Здесь образуются облака, ветер, циклоны и другие явления, влияющие на климат.

Фото: mdesigner125 / iStock

Нижние 1-2 км тропосферы называют планетарным пограничным слоем. В нем формируются турбулентные потоки — вихревые движения воздушных масс с разной амплитудой и скоростью. Их можно почувствовать при полете на авиалайнере, во время прохождения сквозь облака. Турбулентные потоки обеспечивают обмен теплом и влагой между слоями атмосферы.

Между тропосферой и стратосферой находится тропопауза, где температура перестает снижаться.

На расстоянии от 8 до 50 км от поверхности Земли располагается стратосфера. В нее входит озоновый слой, защищающий живые организмы от светового, ультрафиолетового и теплового излучения солнца. Некоторые участки озонового слоя оказались истончены. Самая крупная озоновая дыра находится над Антарктикой, площадь разрыва достигает почти 23 млн кв. км. Впервые ученые заметили истощение концентрации озона в конце 1970-х. Причиной этого стали загрязняющие атмосферу выбросы: соединения фтора, углерода и хлора. Они используются для заправки холодильников и кондиционеров, а также в аэрозолях и вспенивателях. Хотя эти вещества не опасны для людей, последствия разрушения озонового слоя могут стать катастрофическими. Международные усилия по его защите привели к тому, что к 2015 году вредные выбросы снизились более чем на 90%. Сейчас озоновый слой восстанавливается, сообщают метеорологи. Антарктическая дыра может полностью затянуться к середине XXI века.

В нижних слоях стратосферы обычно проходят трассы пассажирских авиалайнеров. Также в стратосфере возникают световые явления, в том числе северное сияние, молнии и зарницы.

Это самая холодная часть земной атмосферы, воздух здесь охлаждается до −143 °C. Воздушные шары, поднявшиеся до мезосферы, зависают на месте из-за малого давления газов. То же самое происходит и с самолетами, если они не оборудованы ракетными двигателями. Также мезосферу невозможно исследовать с помощью спутников и суборбитальных зондов.

В мезосфере сгорает большая часть метеоров и вспыхивает метеоритный поток Персеиды — звездопад, который можно увидеть в июле-августе. Остатки небесных тел (от 10 до 100 тысяч тонн ежедневно) оседают на земле в виде космической пыли.

Границей между мезосферой и термосферой служит мезопауза. Здесь заканчивается активное поглощение излучения Солнца.

Нижняя граница термосферы совпадает с линией Кармана, за которой начинается космос. Технически в состав этого слоя входят газы, которые движутся вместе с нашей планетой и входят в атмосферу. Но их количество незначительно, поэтому полет за линию Кармана считается космическим.

Термосфера охватывает пространство на высоте от 100 до 800 км над уровнем моря. Здесь очень высокая температура — до 1800 °C. Космические аппараты в ней не плавятся из-за разреженного воздуха, создающего эффект вакуума.

Термосферу и экзосферу разделяет термопауза. Температура здесь относительно стабильна, так как на этой высоте солнечные лучи являются единственным источником тепловой энергии.

Последний слой земной атмосферы с нижней границей на высоте порядка 700 км. Ее основной составляющей является водород, также попадаются отдельные атомы азота и кислорода. Экзосфера простирается до 100 тыс. км от Земли. Здесь происходит выветривание атмосферы: выход частиц газовой оболочки (гелия и водорода) на собственные орбиты. Это не опасно, так как потери компенсируются образованием новых частиц.

Подписывайтесь на наш канал в Яндекс.Дзен.

Атмосфера ЗемлиАтмосфера Земли — это газовая оболочка нашей планеты, простирающаяся до тысячи километров ввысь над поверхностью планеты. Она характеризуется высокой динамичностью, физической неоднородностью и уязвимостью к биологическим факторам. На протяжении миллиардов лет истории атмосферы Земли, именно живые существа сильнее всего изменяли ее состав.

Содержание:

  • 1 Основные свойства атмосферы Земли
  • 2 Состав атмосферы Земли. История развития
  • 3 Структура атмосферы
    • 3.1 Тропосфера
    • 3.2 Стратосфера
    • 3.3 Мезосфера
    • 3.4 Термосфера
    • 3.5 Экзосфера
  • 4 Облака
    • 4.1 Облака нижнего яруса
    • 4.2 Облака вертикального развития
    • 4.3 Облака среднего яруса
    • 4.4 Облака верхнего яруса
    • 4.5 Серебристые облака
  • 5 Атмосфера Земли в астрономии

Основные свойства атмосферы Земли

Атмосфера — это наш защитный купол от всяческого рода угроз из космоса. В ней сгорает большая часть метеоритов, которые падают на планету, а ее озоновый слой служит фильтром против ультрафиолетового излучения Солнца, энергия которого смертельна для живых существ. Кроме того, именно атмосфера поддерживает комфортную температуру у поверхности Земли — если бы не парниковый эффект, достигаемый за счет многократного отражения солнечных лучей от облаков, Земля была бы в среднем на 20-30 градусов холоднее. Кругооборот воды в атмосфере и движение воздушных масс не только уравновешивают температуру и влажность, но и создают земное разнообразие ландшафтных форм и минералов — такого богатства не встретить нигде в Солнечной системе.

Горение метеоров — один из подарков нашей атмосферы

Горение метеоров — один из подарков нашей атмосферы

Масса атмосферы составляет 5,2×1018 килограмм. Хотя газовые оболочки распространяются на многие тысячи километров от Земли, ее атмосферой считаются лишь те, которые вращаются вокруг оси со скоростью, равной скорости вращения планеты. Таким образом, высота атмосферы Земли составляет около 1000 километров, плавно переходя в космическое пространство в верхнем слое, экзосфере (от др. греческого «внешний шар»).

Состав атмосферы Земли. История развития

Хотя воздух и кажется однородным, он представляет собой смесь разнообразных газов. Если брать только те, которые занимают хотя бы тысячную долю объема атмосферы, их уже будет 12. Если же смотреть на общую картину, то в воздухе одновременно находится вся таблица Менделеева!

Однако добиться такого разнообразия Земле удалось не сразу. Только благодаря уникальным совпадениям химических элементов и наличию жизни атмосфера Земли стала столь сложной. Наша планета сохранила геологические следы этих процессов, что позволяет нам заглянуть на миллиарды лет назад:

Молодая Земля

Молодая Земля значительно отличалась от своего современного облика. Круглые «озера» — это кратеры от ударов многочисленных метеоритов, которые без труда проникали сквозь тонкую атмосферу.

  • Первыми газами, которые окутали молодую Землю 4,3 миллиарда лет назад, были водород и гелий — фундаментальные составляющие атмосферы газовых гигантов вроде Юпитера. Это самые элементарные вещества — из них состояли остатки туманности, родившей Солнце и окружающие его планеты, и они обильно оседали вокруг гравитационных центров-планет. Их концентрация была не очень высока, а низкая атомная масса позволяла им улетучиваться в космос, что они делают до сих пор. На сегодняшний день их общая удельная масса составляет 0,00052% от общей массы атмосферы Земли (0,00002% водорода и 0,0005% гелия), что совсем мало.
  • Однако внутри самой Земли крылась уйма веществ, которые стремились вырваться из раскаленных недр. Из вулканов было выброшено громадное количество газов — в первую очередь аммиак, метан и углекислый газ, а также сера. Аммиак и метан впоследствии разложились на азот, который ныне занимает львиную долю массы атмосферы Земли — 78%.

Вулканы — одни из главных участников формирования атмосферы

Вулканы — одни из главных участников формирования атмосферы

  • Но настоящая революция в составе атмосферы Земли произошла вместе с приходом кислорода. Он появлялся и естественным путем — раскаленная мантия молодой планеты активно избавлялась от газов, запертых под земной корой. Кроме того, водяные пары, извергаемые вулканами, расщеплялись под воздействием солнечного ультрафиолета на водород и кислород.

Однако такой кислород не мог долго задерживаться в атмосфере. Он вступал в реакции с угарным газом, свободным железом, серой и множеством других элементов на поверхности планеты — а высокие температуры и солнечное излучение катализировало химические процессы. Изменило эту ситуацию только появление живых организмов.

  • Во-первых, они начали выделять столько кислорода, что он не только окислил все вещества на поверхности, но и начал накапливаться — за пару миллиардов лет его количество выросло с ноля до 21% процента всей массы атмосферы.
  • Во-вторых, живые организмы активно использовали углерод атмосферы для построения собственных скелетов. В итоге их деятельности земная кора пополнилась целыми геологическими пластами органических материалов и ископаемых, а углекислого газа стало куда меньше

Известняк с останками древних безпозвоночных организмов

Известняк с останками древних безпозвоночных организмов

  • И, наконец, избыток кислорода сформировал озоновый слой, который стал защищать живые организмы от ультрафиолета. Жизнь стала эволюционировать активнее и приобретать новые, более сложные формы — среди бактерий и водорослей стали появляться высокоорганизованные существа. Сегодня в озон занимает всего 0,00001% всей массы Земли.

Вам уже наверняка известно, что синий цвет неба на Земле тоже создается кислородом — из всего радужного спектра Солнца он лучше всего рассеивает короткие волны света, отвечающие за синий цвет. Этот же эффект действует в космосе — на расстоянии Земля будто окутывается голубой дымкой, а издали и вовсе превращается в синюю точку.

Кроме того, в атмосфере в значительном количестве присутствуют благородные газы. Среди них больше всего аргона, доля которого в атмосфере составляет 0,9–1%. Его источник — ядерные процессы в глубинах Земли, а попадает на поверхность он через микротрещины в литосферных плитах и вулканические извержения (таким же образом появляется гелий в атмосфере). Из-за своих физических особенностей благородные газы поднимаются в верхние слои атмосферы, где улетучиваются в космическое пространство.

Смог над Китаем, вид из космоса

Смог над Китаем, вид из космоса

Как мы можем видеть, состав атмосферы Земли менялся уже не раз, и притом очень сильно — но на это понадобились миллионы лет. С другой стороны, жизненно важные явления очень устойчивы — озоновый слой будет существовать и функционировать, даже если на Земле будет в 100 раз меньше кислорода. На фоне общей истории планеты, деятельность человека не оставила серьезных следов. Однако в локальных масштабах цивилизация способна создавать проблемы — по крайней мере, для себя. Загрязнители воздуха уже сделали жизнь жителей китайского Пекина опасной — а громадные облака грязного тумана над большими городами видны даже из космоса.

Структура атмосферы

Однако экзосфера — это не единственный особый слой нашей атмосферы. Их существует немало, и каждый из них обладает своими уникальными характеристиками. Давайте рассмотрим несколько основных:

Тропосфера

Самый нижний и наиболее плотный слой атмосферы называется тропосферой. Читатель статьи сейчас находится именно в его «придонной» части — если, конечно, он не является одним из 500 тысяч человек, которые летят прямо сейчас в самолете. Верхний предел тропосферы зависит от широты (помните о центробежной силе вращения Земли, из-за которой планета шире на экваторе?) и колеблется от 7 километров на полюсах до 20 километров на экваторе. Также размеры тропосферы зависит от сезона — чем теплее воздух, тем выше поднимается верхний предел.

Название «тропосфера» происходит от древнегреческого слова «tropos», которое переводится как «поворот, изменение». Это достаточно точно отображает свойства слоя атмосферы — он наиболее динамичный и продуктивный. Именно в тропосфере собираются облака и циркулирует вода, создаются циклоны и антициклоны и генерируются ветра — происходят все те процессы, которые мы называем «погода» и «климат». Кроме того, это самый массивный и плотный слой — на него приходится 80% массы атмосферы и почти все содержание воды в ней. Тут же обитает большая часть живых организмов.

Слои атмосферы из космоса. Самый нижний, оранжевый слой — тропосфера.

Слои атмосферы из космоса. Самый нижний, оранжевый слой — тропосфера.

Всем известно, что чем выше подниматься, тем холоднее становится. Это действительно так — каждые 100 метров вверх температура воздуха падает на 0,5-0,7 градуса. Тем не менее принцип работает только в тропосфере — дальше температура с ростом высоты начинает повышаться. Зона между тропосферой и стратосферой, где температура остается неизменной, называется тропопаузой. А еще с высотой убыстряется течение ветра — на 2–3 км/с на километр ввысь. Поэтому пара- и дельтапланеристы предпочитают для полетов возвышенные плато и горы — там всегда удастся «поймать волну».

Круговорот воды в природе

Круговорот воды в природе

Уже упомянутое воздушное дно, где атмосфера контактирует с литосферой, называется приземным пограничным слоем. Его роль в циркуляции атмосферы невероятно велика — отдача тепла и излучения от поверхности создает ветры и перепады давления, а горы и другие неровности рельефа направляют и разделяют их. Тут же происходит водообмен — за 8–12 дней вся вода, взятая из океанов и поверхности, возвращается обратно, превращая тропосферу в своеобразный водный фильтр.

  • Интересный факт — на водообмене с атмосферой завязан важный процесс в жизнедеятельности растений — транспирация. С ее помощью флора планеты активно влияет на климат — так, большие зеленые массивы смягчают погоду и перепады температуры. Растения в насыщенных водой местах испаряют 99% воды, взятой из почвы. К примеру, гектар пшеницы за лето выбрасывает в атмосферу 2–3 тысячи тонн воды — это значительно больше, чем могла бы отдать безжизненная почва.

Нормальное давление у поверхности Земли — около 1000 миллибар. Эталоном считается давление в 1013 мБар, которое составляет одну «атмосферу» — с этой единицей измерения вы уже наверняка сталкивались. С ростом высоты давление стремительно падает: у границ тропосферы (на высоте 12 километров) оно составляет уже 200 мБар, а на высоте 45 километров и вовсе падает до 1 мБар. Поэтому не странно, что именно в насыщенной тропосфере собрано 80% все массы атмосферы Земли.

Стратосфера

Слой атмосферы, располагающийся в диапазоне между 8 км высоты (на полюсе) и 50 км (на экваторе), называется стратосферой. Название происходит от др. греческого слова «stratos», которое значит «настил, слой». Это крайне разреженная зона атмосферы Земли, в которой почти нет водного пара. Давление воздуха в нижней части стратосферы в 10 раз меньше приповерхностного, а в верхней части — в 100 раз.

В разговоре о тропосферу мы уже узнали, что температура в ней понижается в зависимости от высоты. В стратосфере все происходит с точностью до наоборот — с набором высоты температура вырастает от –56°C до 0–1°С. Прекращается нагрев в стратопаузе, границе между страто- и мезосферами.

Вид на Землю из стратосферы. Облака сверху выглядят даже меньшими, чем снизу

Вид на Землю из стратосферы. Облака сверху выглядят даже меньшими, чем снизу

Жизнь и человек в стратосфере

Пассажирские лайнеры и сверхзвуковые самолеты обычно летают в нижних слоях стратосферы — это не только защищает их от нестабильности воздушных потоков тропосферы, но и упрощает их движение за счет малого аэродинамического сопротивления. А низкие температуры и разреженность воздуха позволяют оптимизировать потребление топлива, что особенно важно для дальних перелетов.

Однако существует технический предел высоты для самолета — приток воздуха, которого в стратосфере так мало, необходим для работы реактивных двигателей. Соответственно, для достижения нужного давления воздуха в турбине самолету приходится двигаться быстрее скорости звука. Поэтому высоко в стратосфере (на высоте 18–30 километров) могут передвигаться только боевые машины и сверхзвуковые самолеты вроде «Конкордов». Так что основными «обитателями» стратосферы являются метеорологические зонды, прикрепленные к воздушным шарам — там они могут оставаться длительное время, собирая информацию о динамике нижележащей тропосферы.

Конкорд — пассажирский сверхзвуковой самолет

Конкорд — пассажирский сверхзвуковой самолет

Читателю уже наверняка известно, что вплоть до самого озонового слоя в атмосфере встречаются микроорганизмы — так называемый аэропланктон. Однако не одни бактерии способны выживать в стратосфере. Так, однажды в двигатель самолета на высоте 11,5 тысяч метров попал африканский сип — особая разновидность грифа. А некоторые утки во время миграций спокойно пролетают над Эверестом.

Но самым большим существом, побывавшим в стратосфере, остается человек. Текущий рекорд по высоте был установлен Аланом Юстасом — вице-президентом компании Google. В день прыжка ему было 57 лет! На специальном воздушном шаре он поднялся на высоту 41 километр над уровнем моря, а затем спрыгнул вниз с парашютом. Скорость, которую он развил в пиковый момент падения, составила 1342 км/ч — больше скорости звука! Одновременно Юстас стал первым человеком, самостоятельно преодолевшим звуковой порог скорости (не считая скафандра для поддержки жизнедеятельности и парашютов для приземления в целом виде).

  • Интересный факт — для того чтобы отсоединиться от воздушного шара, Юстасу понадобилось взрывное устройство — вроде того, что используется космическими ракетами при отсоединении ступеней.

Алан Юстас в скафандре.

Алан Юстас в скафандре. Прыжок был совершен только в защитном костюме — без герметических капсул и прочих защитных мер.

Озоновый слой

А еще на границе между стратосферой и мезоферой находится знаменитый озоновый слой. Он защищает поверхность Земли от воздействия ультрафиолетовых лучей, а заодно служит верхней границей распространения жизни на планете — выше него температура, давление и космическое излучение быстро положат конец даже самым стойким бактериям.

Откуда же взялся этот щит? Ответ невероятен — он был создан живыми организмами, точнее — кислородом, которые разнообразные бактерии, водоросли и растения выделяли с незапамятных времен. Поднимаясь высоко по атмосфере, кислород контактирует с ультрафиолетовым излучением и вступает в фотохимическую реакцию. В итоге из обычного кислорода, которым мы дышим, O2, получается озон — O3.

Парадоксально, но созданный излучением Солнца озон защищает нас от этого же излучения! А еще озон не отражает, а поглощает ультрафиолет — тем самым он нагревает атмосферу вокруг себя.

Фиолетовый жидкий озон и синий кислород при температуре ниже –180°C

Фиолетовый жидкий озон и синий кислород при температуре ниже –180°C

Мезосфера

Мы уже упоминали, что над стратосферой — точнее, над стратопаузой, пограничной прослойкой стабильной температуры — находится мезосфера. Этот относительно небольшой слой располагается между 40–45 и 90 километров высоты и является самым холодным местом в нашей планете — в мезопаузе, верхнем слое мезосферы, воздух охлаждается до –143°C.

Мезосфера является наименее изученной частью атмосферы Земли. Экстремально малое давление газов, которое от тысячи до десяти тысяч раз ниже поверхностного, ограничивает движение воздушных шаров — их подъемная сила доходит до нуля, и они попросту зависают на месте. То же происходит с реактивными самолетами — аэродинамика крыла и корпуса самолета теряют свой смысл. Поэтому летать в мезосфере могут либо ракеты, либо самолеты с ракетными двигателями — ракетопланы. К таким относится ракетоплан X-15, который удерживает позицию самого быстрого самолета в мире: он достиг высоты в 108 километров и скорости 7200 км/ч — в 6,72 раза больше скорости звука.

X-15 в полете

X-15 в полете

Однако рекордный полет X-15 составил всего 15 минут. Это символизирует общую проблему движущихся в мезосфере аппаратов — они слишком быстры, чтобы провести какие-либо основательные исследования, и находятся на заданной высоте недолго, улетая выше или падая вниз. Также мезосферу нельзя исследовать при помощи спутников или суборбитальных зондов — пусть давление в этом слое атмосферы и низкое, оно тормозит (а порой и сжигает) космические аппараты. Из-за этих сложностей ученые часто называют мезосферу «незнайкосферой» (от англ. «ignorosphere», где «ignorance» — невежество, незнание).

А еще именно в мезосфере сгорает большинство метеоров, падающих на Землю — именно там вспыхивает метеоритный поток Персеиды, известный как «августовский звездопад». Световой эффект происходит тогда, когда космическое тело входит в атмосферу Земли под острым углом со скоростью больше 11 км/ч — от силы трения метеорит загорается.

Персеиды. Снято в 2015 году

Персеиды. Снято в 2015 году

Растеряв свою массу в мезосфере, остатки «пришельцев» оседают на Землю в виде космической пыли — каждый день на планету попадает от 100 до 10 тысяч тонн метеоритного вещества. Поскольку отдельные пылинки очень легкие, на путь к поверхности Земли у них уходит до одного месяца! Попадая в тучи, они утяжеляют их и даже иногда вызывают дожди — как вызывает их вулканический пепел или частицы от ядерных взрывов. Однако сила влияния космической пыли на дождеобразование считается небольшой — даже 10 тысяч тонн маловато, чтобы серьезно изменить естественную циркуляцию атмосферы Земли.

Термосфера

Над мезосферой, на высоте 100 километров над уровнем моря, проходит линия Кармана — условная граница между Землей и космосом. Хотя там и присутствуют газы, которые вращаются вместе с Землей и технически входят в атмосферу, их количество выше линии Кармана незримо мало. Поэтому любой полет, который выходит за высоту 100 километров, уже считается космическим.

С линией Кармана совпадает нижняя граница самого протяженного слоя атмосферы — термосферы. Она поднимается до высоты 800 километров и отличается чрезвычайно высокой температурой — на высоте 400 километров она достигает максимума в 1800°C!

Шаттл на линии Кармана. На фото отчетливо видны все слои атмосферы

Шаттл на линии Кармана. На фото отчетливо видны все слои атмосферы

Горячо, не правда ли? При температуре в 1538°C начинает плавиться железо — как же тогда космические аппараты остаются целыми в термосфере? Все дело в чрезвычайно низкой концентрации газов в верхней атмосфере — давление посередине термосферы в 1000000 меньше концентрации воздуха у поверхности Земли! Энергия отдельно взятых частиц высока — но расстояние между ними огромное, и космические аппараты фактически находятся в вакууме. Это, впрочем, не помогает им избавляться от тепла, которое выделяют механизмы — для тепловыделения все космические аппараты оснащены радиаторами, которые излучают избыточную энергию.

  • На заметку. Когда речь идет о высоких температурах, всегда стоит учитывать плотность раскаленной материи — так, ученые на Андронном Коллайдере действительно могут нагреть вещество до температуры Солнца. Но очевидно, что это будут отдельные молекулы — одного грамма вещества звезды хватило бы для мощнейшего взрыва. Поэтому не стоит верить желтой прессе, которая обещает нам скорый конец света от «рук» Коллайдера, как и не стоит бояться жара в термосфере.

Термосфера и космонавтика

Термосфера фактически является открытым космосом — именно в ее пределах пролегала орбита первого советского «Спутника». Там же был апоцентр — наивысшая точка над Землей — полета корабля «Восток-1» с Юрием Гагариным на борту. Многие искусственные спутники для изучения поверхности Земли, океана и атмосферы, вроде спутников Google Maps, тоже запускаются на эту высоту. Поэтому если речь идет о НОО (Низкой Опорной Орбите, расхожий термин в космонавтике), в 99% случаев она находится в термосфере.

Корабль Восток-1 на орбите в представлении художника

Корабль Восток-1 на орбите в представлении художника

Орбитальные полеты людей и животных не просто так происходят в термосфере. Дело в том, что в ее верхней части, на высоте от 500 километров, простираются радиационные пояса Земли. Именно там заряженные частицы солнечного ветра ловятся и накапливаются магнитосферой. Длительное нахождение в радиационных поясах приносит непоправимый вред живым организмам и даже электронике — поэтому все высокоорбитальные аппараты обладают защитой от радиации.

Полярные сияния

В полярных широтах часто появляется зрелищное и грандиозное зрелище — полярные сияния. Они выглядят как длинные светящиеся дуги разнообразных цветов и форм, которые переливаются в небе. Их появлению Земля обязана своей магнитосферой — а, точнее, прорехами в ней возле полюсов. Заряженные частицы солнечного ветра прорываются внутрь, заставляя атмосферу светиться. Полюбоваться на самые зрелищные сияния и узнать подробнее их происхождение можно тут.

Сейчас сияния являются обыденностью для жителей приполярных стран, таких как Канада или Норвегия, а также обязательным пунктом в программе любого туриста — однако раньше им приписывались сверхъестественные свойства. В разноцветных огнях людям древности виделись врата в рай, мифические существа и костры духов, а их поведение считали прорицаниями. И наших предков можно понять — даже образование и вера в собственный разум порой не могут сдержать благоговения перед силами природы.

Полярное сияние из МКС

Полярное сияние из МКС

Экзосфера

Последний слой атмосферы Земли, нижняя граница которого проходит на высоте 700 километров — это экзосфера (от др. греческого коря «экзо» — вне, снаружи). Она невероятно рассеянная и состоит преимущественно из атомов легчайшего элемента — водорода; также попадаются отдельные атомы кислорода  и азота, которые сильно ионизированы всепроникающим излучением Солнца.

Размеры экзосферы Земли невероятно велики — она перерастает в корону Земли, геокорону, которая растянута до 100 тысяч километров от планеты. Она очень разрежена — концентрация частиц в миллионы раз меньше плотности обычного воздуха. Но если Луна заслонит Землю для отдаленного космического корабля, то корона нашей планеты будет видна, как видна нам корона Солнца при его затмении. Однако наблюдать это явление пока не удавалось.

Спутник Google Maps. Аппараты для крупномасштабной съемки обычно находятся на орбитах внутри экзосферы

Спутник Google Maps. Аппараты для крупномасштабной съемки обычно находятся на орбитах внутри экзосферы

Выветривание атмосферы

А еще именно в экзосфере происходит выветривание атмосферы Земли — из-за большого расстояния от гравитационного центра планеты частички легко отрываются от общей газовой массы и выходят на собственные орбиты. Это явление называется диссипацией атмосферы. Наша планета ежесекундно теряет 3 килограмма водорода и 50 грамм гелия из атмосферы. Только эти частицы достаточно легки, чтобы покинуть общую газовую массу.

Несложные расчеты показывают, что Земля ежегодно теряет около 110 тысяч тонн массы атмосферы. Опасно ли это? На самом деле нет — мощности нашей планеты по «производству» водорода и гелия превышают темпы потерь. Кроме того, часть потерянного вещества со временем возвращается обратно в атмосферу. А важные газы вроде кислорода или углекислого газа попросту слишком тяжелы, чтобы массово покидать Землю — поэтому не стоит бояться, что атмосфера нашей Земли улетучится.

  • Интересный факт — «пророки» конца света часто говорят, что если ядро Земли перестанет вращаться, атмосфера быстро выветрится под напором солнечного ветра. Однако наш читатель знает, что удерживают атмосферу возле Земли силы гравитации, которые будут действовать вне зависимости от вращения ядра. Ярким доказательством этого служит Венера, у которой неподвижное ядро и слабое магнитное поле, но зато атмосфера в 93 раза плотнее и тяжелее земной. Однако это не значит, что прекращение динамики земного ядра безопасно — тогда исчезнет магнитное поле планеты. Его роль важна не столько в сдерживании атмосферы, сколько в защите от заряженных частиц солнечного ветра, которые легко превратят нашу планету в радиоактивную пустыню.

Облака

Вода на Земле существует не только в необъятном океане и многочисленных реках. Около 5,2 ×1015 килограмм воды находится в атмосфере. Она присутствует практически везде — доля пара в воздухе колеблется от 0,1% до 2,5% объема в зависимости от температуры и местоположения. Однако больше всего воды собрано в облаках, где она хранится не только в виде газа, но и в маленьких капельках и ледяных кристаллах. Концентрация воды в тучах достигает 10г/м3 — а так как облака достигают объема в несколько кубических километров, масса воды в них исчисляется десятками и сотнями тонн.

Разнообразные классы облаков

Разнообразные классы облаков

Облака — это самое заметное образование нашей Земли; они видны даже с Луны, где очертания континентов размываются перед невооруженным глазом. И это не странно — ведь тучами постоянно покрыто больше 50% Земли!

В теплообмене Земли облака играют невероятно важную роль. Зимой они захватывают солнечные лучи, повышая температуру под собой за счет парникового эффекта, а летом экранируют громадную энергию Солнца. Также облака уравновешивают перепады температуры между днем и ночью. К слову, именно из-за их отсутствия пустыни так сильно остывают ночью — все накопленное песком и скалами тепло беспрепятственно улетает ввысь, когда в других регионах его удерживают тучи.

Преобладающее большинство туч формируются у поверхности Земли, в тропосфере, однако в своем дальнейшем развитии они принимают самые разнообразные формы и свойства. Их разделение весьма полезно — появление туч различных видов может не только помочь предсказывать погоду, но и определять наличие примесей в воздухе! Давайте рассмотрим основные типы облаков подробнее.

Облако из космоса

Облако из космоса

Облака нижнего яруса

Тучи, которые опускаются ниже всего над землей, относят к облакам нижнего яруса. Им характерна высокая однородность и низкая масса — когда они опускаются на землю, ученые-метеорологи не отделяют их от обычного тумана. Тем не менее разница между ними есть — одни просто заслоняют небо, а другие могут разразиться большими дождями и снегопадами.

  • К тучам, способным дать сильные осадки, относятся слоисто-дождевые облака. Они самые большие среди туч нижнего яруса: их толщина достигает нескольких километров, а линейные измерения превышают тысячи километров. Они представляют собой однородную серую массу — взгляните на небо во время продолжительного дождя, и вы наверняка увидите слоисто-дождевые облака.
  • Другой вид облаков нижнего яруса — это слоисто-кучевые облака, поднимающиеся над землей на 600–1500 метров. Они представляют собой группы из сотен серо-белых туч, разделенных небольшими просветами. Такие облака мы обычно видим в дни переменной облачности. С них редко идет дождь или снег.
  • Последний вид нижних облаков — это обычные слоистые облака; именно они застилают небо в пасмурные дни, когда с неба пускается мелкая морось. Они очень тонкие и низкие — высота слоистых облаков в максимуме достигает 400–500 метров. Их структура очень напоминает строение тумана — опускаясь ночью к самой земле, они часто создают густую утреннюю дымку.

Слоисто-кучевые облака

Слоисто-кучевые облака

Облака вертикального развития

У туч нижнего яруса есть старшие братья — облака вертикального развития. Хотя их нижняя граница пролегает на небольшой высоте в 800–2000 километров, облака вертикального развития серьезно устремляются вверх — их толщина может достигать 12–14 километров, что подталкивает их верхний предел к границам тропосферы. Еще такие облака называют конвективными: из-за больших размеров вода в них приобретает разную температуру, что порождает конвекцию — процесс перемещения горячих масс наверх, и холодных — вниз. Поэтому в облаках вертикального развития одновременно существуют водный пар, мелкие капельки, снежинки и даже целые кристаллы льда.

  • Основным типом вертикальных облаков являются кучевые облака — громадные белые тучи, напоминающие рваные куски ваты или айсберги. Для их существования необходима высокая температура воздуха — поэтому в средней полосе России они появляются только летом и тают к ночи. Их толщина достигает нескольких километров.
  • Однако когда кучевые облака имеют возможность собраться вместе, они создают куда более грандиозную форму — кучево-дождевые облака. Именно с них идут сильные ливни, град и грозы летом. Существуют они только несколько часов, но при этом разрастаются ввысь до 15 километров — верхняя их часть достигает температуры –10°C и состоит из кристалликов льда.На верхушках самых больших кучево-дождевых туч формируются «наковальни» — плоские области, напоминающие гриб или перевернутый утюг. Это происходит на тех участках, где облако достигает границы стратосферы — физика не позволяет распространяться дальше, из-за чего кучево-дождевая туча расползается вдоль предела высоты.

Большое кучево-дождевое облако

Большое кучево-дождевое облако

  • Интересный факт — мощные кучево-дождевые облака формируются в местах извержений вулканов, ударов метеоритов и ядерных взрывов. Эти тучи являются самыми большими — их границы достигают даже стратосферы, выбираясь на высоту 16 километров. Будучи насыщенными испаренной водой и микрочастицами, они извергают мощные грозовые ливни — в большинстве случаев этого достаточно, чтобы потушить связанные с катаклизмом возгорания. Вот такой вот природный пожарный :-)

Облака среднего яруса

В промежуточной части тропосферы (на высоте от 2–7 километров в средних широтах) находятся облака среднего яруса. Им свойственны большие площади — на них меньше влияют восходящие потоки от земной поверхности и неровности ландшафта — и небольшая толщина в несколько сот метров. Это те облака, которые «наматываются» вокруг острых пиков гор и зависают возле них.

Сами облака среднего яруса делятся на два основных типа — высокослоистые и высококучевые.

  • Высокослоистые облака — это одна из составляющих сложных атмосферных масс. Они представляют собой однородную, серовато-синюю пелену, через которую видны Солнце и Луна — хотя протяженность высокослоистых облаков составляет тысячи километров, их толщина составляет всего несколько километров. Серая плотная пелена, которая видна из иллюминатора самолета, летящего на большой высоте — это именно высокослоистые облака. Часто из них идут длительные дожди или снег.

Высококучевые и высокослоистые облака

Высококучевые и высокослоистые облака

  • Высококучевые облака, напоминающие мелкие куски рваной ваты или тонкие параллельные полосы, встречаются в теплую пору года — они образуются при поднятии теплых воздушных масс на высоту 2–6 километров. Высококучевые облака служат верным индикатором грядущей перемены погоды и приближения дождя — создать их может не только естественная конвекция атмосферы, но и наступления холодных воздушных масс. С них редко идет дождь — однако тучи могут сбиться вместе и создать одно большое дождевое облако.

К слову о тучах возле гор — на фотографиях (а, может, и вживую) вы наверняка не раз видели круглые облака, напоминающие ватные диски, которые зависают слоями над горной вершиной. Дело в том, что облака среднего яруса часто бывают лентикулярными или линзовидными — разделенными на несколько параллельных слоев. Их создают воздушные волны, образующиеся при обтекании ветром крутых пиков. Линзовидные тучи также особенны тем, что висят на месте даже при самом сильном ветре. Это делает возможным их природа — поскольку такие облака создаются в местах контакта нескольких воздушных потоков, они находятся в относительно стабильной позиции.

Лентикулярные облака над горой Фудзи, Япония

Лентикулярные облака над горой Фудзи, Япония

Облака верхнего яруса

Последний уровень обычных туч, которые поднимаются до нижних пределов стратосферы, называется верхним ярусом. Высота таких облаков достигает 6–13 километров — там очень холодно, и потому облака на верхнем ярусе состоят из мелких льдинок. Из-за их волокнистой растянутой формы, напоминающей перья, высокие облака также называются перистыми — хотя причуды атмосферы часто придают им форму когтей, хлопьев и даже рыбьих скелетов. Осадки, которые образуются с них, никогда не достигают земли — но само присутствие перистых облаков служит древним способом предсказывать погоду.

  • Чисто-перистые облака являются самыми протяженными среди туч верхнего яруса — длина отдельного волокна может достигать десятка километров. Так как кристаллы льда в тучах достаточно большие, чтобы ощущать на себе притяжение Земли, перистые облака «падают» целыми каскадами — расстояние между верхней и нижней точкой отдельно взятого облака может достигать 3-4 километров! По сути, перистые тучи — это громадные «ледопады». Именно различия в форме кристаллов воды создают их волокнистую, потокообразную форму.
  • В этом классе попадаются и практически невидимые облака — перисто-слоистые облака. Они образуются тогда, когда большие массы приповерхностного воздуха поднимаются ввысь — на большой высоте их влажности достаточно для формирования облака. Когда сквозь них просвечивает Солнце или Луна, появляется гало — сияющий радужный диск из рассеянных лучей.

Перистые облака

Перистые облака

Серебристые облака

В отдельный класс стоит выделить серебристые облака — самые высокие тучи на Земле. Они забираются на высоту 80 километров, что даже выше стратосферы! Кроме того, они имеют необычный состав — в отличие от других облаков, они состоят из метеоритной пыли и метана, а не воды. Эти тучи видны только после заката или перед рассветом — лучи Солнца, проникающие из-за горизонта, подсвечивают серебристые облака, которые в течение дня остаются невидимыми на высоте.

Серебристые облака представляют собой невероятно красивое зрелище  — однако чтобы увидеть их в Северном полушарии, нужны особые условия. А еще их загадку было не так просто разгадать — ученые в бессилии отказывались в них верить, объявляя серебристые тучи оптической иллюзией. Посмотреть на необычные облака и узнать о их секретах вы можете из нашей специальной статьи.

Серебристые облака

Серебристые облака

Атмосфера Земли в астрономии

В заглавной статье мы упоминали о том, что Земля служит главным инструментом познания других миров. Не является исключением и ее атмосфера — сопоставляя земные и инопланетные явления, астрономы узнают древнюю историю близких и не очень планет.

К примеру, цвет атмосферы других планет открывает нам тайны ее состава. Атмосфера Марса имеет такой же красный оттенок, как и его поверхность. Это связано с тем, что доминирующий газ на Марсе — это углекислый газ. То же самое касается экзопланет. Анализируя их цветовой спектр, мы можем узнать о составе атмосферы — даже не представляя, как планета выглядит.

А состав атмосферы, как мы знаем, может многое рассказать нам о планете. Если много углекислого газа — значит, на планете бушуют вулканы и происходят активные геологические процессы. Водные пары в атмосфере не гарантируют океанов на поверхности, но зато являются источником кислорода. А существующий избыток кислорода является почти стопроцентной гарантией наличие жизни. Ведь мы с вами уже знаем, что кислород из неживых источников сразу же тратится на химические реакции, и для его накапливания требуется биотический источник.

Облака на Марсе

На Марсе тоже есть атмосфера и даже облака

Кроме того, все газы и жидкости циркулируют по схожим химическим законам. Хотя вода и является уникальным по свойствам веществом, она не является незаменимым компонентом атмосферы. На Титане, спутнике Сатурна, существует газовая оболочка, схожая по строению с земной. В ней формируются все те же классы облаков, так же циркулирует жидкость в атмосфере — но ее температура на сотню градусов ниже, а вместо воды фигурирует метан!

А еще атмосфера оставляет ярко выраженные следы на поверхности Земли. Признаки ветровой эрозии остаются даже после того, как космический объект потеряет свою атмосферу. Сравнивая инопланетные и Земные ландшафты, можно с точностью определить их историю — так, теоретические изыскания, сделанные по спутниковым снимкам рельефа Марса, нашли свое подтверждение во время работы марсоходов.

Планеты Солнечной системы
Карликовые планеты Плутон·
Церера·
Хаумеа·
Макемаке·
Эрида
Планеты Земной группы Меркурий·
Венера·
Земля·
Марс
Газовые гиганты Юпитер·
Сатурн·
Уран·
Нептун

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Рассказ о детских играх и забавах зимой 2 класс литературное чтение
  • Рассказ о знаменитом человеке села
  • Рассказ о детских и лицейских годах пушкина 5 класс
  • Рассказ о знаке зодиака телец для 2 класса окружающий мир
  • Рассказ о деревенском быте

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии