Множество как пишется в математике

Что такое множество в математике и как оно обозначается

Множество – это количество предметов или чисел, обладающих общими свойствами.

Множество в математике

Данное определение подходит к любой совокупности с одинаковыми признаками, независимо оттого, сколько предметов в нее входит: толпа людей, стог сена, звезды в небе.

В математике изучаемое понятие обозначается заглавными латинскими буквами, например: А, С, Z, N, Q, A1, A2 и т. д.

Объекты, составляющие группу, называются элементами множества и записываются строчными латинскими буквами: a, b, c, d, x, y, a1, a2 и т. д.

Границы совокупности обозначаются фигурными скобками { }.

Пример:

  1. А = {а, в, с, у} – А состоит из четырех элементов.

  2. Записать совокупность Z согласных букв в слове «калькулятор»:

Z = {к, л, т, р}, повторяющиеся согласные записываются один раз. Z состоит из четырех элементов.

Принадлежность элементов множеству обозначается знаком – Є.

Пример: N = {a, b, c, y}, а Є N – элемент «а» принадлежит N.

Виды множеств

Выделяют три вида множеств:

  • конечные — совокупности, имеющие максимальный и минимальный предел (например, отрезок);

  • бесконечные — не являющиеся конечными (например, числовые);

  • пустые (обозначаются Ø) – не имеющие элементов.

Если две разные совокупности содержат одинаковые элементы, то одна из них (со всеми своими элементами) является подмножеством другой и обозначается знаком — ⊆.

Пример: А = {а, в, с, у} и В = {а, в, с, е, к} – все элементы А являются элементами совокупности В, следовательно А ⊆ В. 

Если множества состоят из одинаковых элементов, их называют равными.

Пример: А = {23, 29, 48} и В = {23, 29, 48}, тогда А = В.

В математике выделяют несколько числовых совокупностей. Рассмотрим их подробнее.

Множество натуральных чисел

К совокупности натуральных чисел (N) относятся цифры, используемые при счете — от 1 до бесконечности.

Множество натуральных чисел

Натуральные числа используют для исчисления порядка предметов. Обязательное условие данной числовой группы — каждое следующее число больше предыдущего на единицу.

N = {9, 11, 13, 15……}.

Относится ли ноль к натуральным числам? Это до сих пор открытый вопрос для математиков всего мира.

Множество целых чисел

Совокупность целых чисел (Z) включает в себя положительные натуральные и отрицательные числа, а также ноль:

Z = {-112, -60, -25, 0, 36, 58, 256}.

Следовательно, N — подмножество Z, что можно записать как N ⊆ Z. Любое натуральное число можно назвать так же и целым.

Множества целых и рациональных чисел

Множество рациональных чисел

Совокупность рациональных чисел (Q) состоит из дробей (обыкновенных и десятичных), целых и смешанных чисел:

Q={-½; 0; ½, 5; 10}.

Любое рациональное число можно представить в виде дроби, у которой числителем служит любое целое число, а знаменателем – натуральное:

5 = 5/1 = 10/2 = 25/5;

0,45 = 45/100 = 9/20.

Следовательно, N и Z являются подмножествами Q.

Операции над множествами

Точно так же, как и все математические объекты, множества можно складывать и вычитать, то есть совершать операции.

Операции над множествами

Если две группы образуют третью, содержащую элементы исходных совокупностей – это называется суммой (объединением) множеств и обозначается знаком ∪.

Пример: В = {1, 6, 17} и С = {2, 13, 18}, В ∪ С= {1, 2, 6, 13, 17, 18}.

Если две группы совокупностей образуют третью, состоящую только из общих элементов заданных составляющих, это называется произведением (пересечением) множеств, обозначается значком ∩.

Пример: В = {36, 42, 53, 64} и С = {32, 42, 55, 66}, В ∩ С = {42}.

Если две совокупности образуют третью, включающую элементы одной из заданных групп и не содержащую элементы второй, получается разность (дополнение) совокупностей, обозначается значком /.

Пример: В = {12, 14, 16, 18} и С = {13, 14, 15, 17}, В / С = {14}.

В случае, когда В / С = С / В, получается симметричная разность и обозначается значком Δ.

Для «чайников» или кому трудно даётся данная тема операции с совокупностями можно отобразить с помощью диаграмм Венна:

Объединение

Объединение

Пересечение

Пересечение

Дополнение

Дополнение

С помощью данных диаграмм можно разобраться с законами де Моргана по поводу логической интерпретации операций над множествами. 

Свойства операций над множествами

Операции над множествами обладают свойствами, аналогичными правилу свойств сложения, умножения и вычитания чисел:

Свойства операций над множествами

Коммутативность – переместительные законы:

  • умножения S ∩ D = D ∩ S;

  • сложения S ∪ D = D ∪ S. 

Ассоциативность – сочетательные законы:

  • умножения (S ∩ F) ∩ G = S ∩ (F ∩ G);

  • сложения (S ∪ F) ∪ G = S ∪ (F ∪ G). 

Дистрибутивность – законы распределения:

  • умножения относительно вычитания S ∩ (F – G) = (S ∩ F) – (S ∩ G);

  • умножения относительно сложения G ∩ (S ∪ F) = (G ∩ S) ∪ (G ∩ F);

  • сложения относительно умножения G ∪ (S ∩ F) = (G ∪ S) ∩ (G ∪ F). 

Транзитивность — законы включения:

  • если S ⊆ Fи F ⊆ J, то S ⊆ J;

  • если S ⊆ F и F ⊆ S, то S = F. 

Идемпотентность объединения и пересечения:

  • S ∩ S = S;

  • S ∪ S = S.

О других свойствах операций можно узнать из картинки:

Свойства операций над множествами

Счетные и несчетные множества

Если между элементами двух групп можно установить взаимное немногозначное соответствие, то эти группы чисел равномощны, при условии равного количества элементов. 

Счетное множество

Мощность данной математической единицы равна количеству элементов в ней. Например, множество всех нечетных положительных чисел равномощно группе всех четных чисел больше ста.

В случае, когда бесконечное множество равномощно натуральному ряду чисел, оно называется счетным, а если оно не равномощно — несчетным. Другими словами, счетная единица — это совокупность, которую мы можем представить в виде последовательности чисел по порядковым номерам. 

Несчетное множество

Но не все группы действительных чисел счетные. Примером несчетной группы предметов является бесконечная десятичная дробь.

Теория множеств — достаточно широкая тема, которая требует глубокого изучения. Она затрагивает начальный курс математики, изучается в среднем звене школьной программы по алгебре. Высшая математика, математический анализ, логика – рассматривают законы, теоремы, аксиомы множеств, на которых основаны фундаментальные знания науки.

This article is about what mathematicians call «intuitive» or «naive» set theory. For a more detailed account, see Naive set theory. For a rigorous modern axiomatic treatment of sets, see Set theory.

A set is the mathematical model for a collection of different[1] things;[2][3][4] a set contains elements or members, which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets.[5] The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements.[6]

Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century.[5]

History[edit]

The concept of a set emerged in mathematics at the end of the 19th century.[7] The German word for set, Menge, was coined by Bernard Bolzano in his work Paradoxes of the Infinite.[8][9][10]

Passage with a translation of the original set definition of Georg Cantor. The German word Menge for set is translated with aggregate here.

Georg Cantor, one of the founders of set theory, gave the following definition at the beginning of his Beiträge zur Begründung der transfiniten Mengenlehre:[1]

A set is a gathering together into a whole of definite, distinct objects of our perception or our thought—which are called elements of the set.

Bertrand Russell called a set a class:[11]

When mathematicians deal with what they call a manifold, aggregate, Menge, ensemble, or some equivalent name, it is common, especially where the number of terms involved is finite, to regard the object in question (which is in fact a class) as defined by the enumeration of its terms, and as consisting possibly of a single term, which in that case is the class.

Naive set theory[edit]

The foremost property of a set is that it can have elements, also called members. Two sets are equal when they have the same elements. More precisely, sets A and B are equal if every element of A is an element of B, and every element of B is an element of A; this property is called the extensionality of sets.[12]

The simple concept of a set has proved enormously useful in mathematics, but paradoxes arise if no restrictions are placed on how sets can be constructed:

  • Russell’s paradox shows that the «set of all sets that do not contain themselves«, i.e., {x | x is a set and xx}, cannot exist.
  • Cantor’s paradox shows that «the set of all sets» cannot exist.

Naïve set theory defines a set as any well-defined collection of distinct elements, but problems arise from the vagueness of the term well-defined.

Axiomatic set theory[edit]

In subsequent efforts to resolve these paradoxes since the time of the original formulation of naïve set theory, the properties of sets have been defined by axioms. Axiomatic set theory takes the concept of a set as a primitive notion.[13] The purpose of the axioms is to provide a basic framework from which to deduce the truth or falsity of particular mathematical propositions (statements) about sets, using first-order logic. According to Gödel’s incompleteness theorems however, it is not possible to use first-order logic to prove any such particular axiomatic set theory is free from paradox.[citation needed]

How sets are defined and set notation[edit]

Mathematical texts commonly denote sets by capital letters[14][5] in italic, such as A, B, C.[15] A set may also be called a collection or family, especially when its elements are themselves sets.

Roster notation[edit]

Roster or enumeration notation defines a set by listing its elements between curly brackets, separated by commas:[16][17][18][19]

A = {4, 2, 1, 3}

B = {blue, white, red}.

In a set, all that matters is whether each element is in it or not, so the ordering of the elements in roster notation is irrelevant (in contrast, in a sequence, a tuple, or a permutation of a set, the ordering of the terms matters). For example, {2, 4, 6} and {4, 6, 4, 2} represent the same set.[20][15][21]

For sets with many elements, especially those following an implicit pattern, the list of members can be abbreviated using an ellipsis ‘‘.[22][23] For instance, the set of the first thousand positive integers may be specified in roster notation as

{1, 2, 3, …, 1000}.

Infinite sets in roster notation[edit]

An infinite set is a set with an endless list of elements. To describe an infinite set in roster notation, an ellipsis is placed at the end of the list, or at both ends, to indicate that the list continues forever. For example, the set of nonnegative integers is

{0, 1, 2, 3, 4, …},

and the set of all integers is

{…, −3, −2, −1, 0, 1, 2, 3, …}.

Semantic definition[edit]

Another way to define a set is to use a rule to determine what the elements are:

Let A be the set whose members are the first four positive integers.

Let B be the set of colors of the French flag.

Such a definition is called a semantic description.[24][25]

Set-builder notation[edit]

Set-builder notation specifies a set as a selection from a larger set, determined by a condition on the elements.[25][26][27] For example, a set F can be defined as follows:

{displaystyle F={nmid n{text{ is an integer, and }}0leq nleq 19}.}

In this notation, the vertical bar «|» means «such that», and the description can be interpreted as «F is the set of all numbers n such that n is an integer in the range from 0 to 19 inclusive». Some authors use a colon «:» instead of the vertical bar.[28]

Classifying methods of definition[edit]

Philosophy uses specific terms to classify types of definitions:

  • An intensional definition uses a rule to determine membership. Semantic definitions and definitions using set-builder notation are examples.
  • An extensional definition describes a set by listing all its elements.[25] Such definitions are also called enumerative.
  • An ostensive definition is one that describes a set by giving examples of elements; a roster involving an ellipsis would be an example.

Membership[edit]

If B is a set and x is an element of B, this is written in shorthand as xB, which can also be read as «x belongs to B«, or «x is in B«.[12] The statement «y is not an element of B» is written as yB, which can also be read as «y is not in B«.[29][30]

For example, with respect to the sets A = {1, 2, 3, 4}, B = {blue, white, red}, and F = {n | n is an integer, and 0 ≤ n ≤ 19},

4 ∈ A and 12 ∈ F; and

20 ∉ F and green ∉ B.

The empty set[edit]

The empty set (or null set) is the unique set that has no members. It is denoted or emptyset or { }[31][32] or ϕ[33] (or ϕ).[34]

Singleton sets[edit]

A singleton set is a set with exactly one element; such a set may also be called a unit set.[6] Any such set can be written as {x}, where x is the element.
The set {x} and the element x mean different things; Halmos[35] draws the analogy that a box containing a hat is not the same as the hat.

Subsets[edit]

If every element of set A is also in B, then A is described as being a subset of B, or contained in B, written AB,[36] or BA.[37] The latter notation may be read B contains A, B includes A, or B is a superset of A. The relationship between sets established by ⊆ is called inclusion or containment. Two sets are equal if they contain each other: AB and BA is equivalent to A = B.[26]

If A is a subset of B, but A is not equal to B, then A is called a proper subset of B. This can be written AB. Likewise, BA means B is a proper superset of A, i.e. B contains A, and is not equal to A.

A third pair of operators ⊂ and ⊃ are used differently by different authors: some authors use AB and BA to mean A is any subset of B (and not necessarily a proper subset),[38][29] while others reserve AB and BA for cases where A is a proper subset of B.[36]

Examples:

  • The set of all humans is a proper subset of the set of all mammals.
  • {1, 3} ⊂ {1, 2, 3, 4}.
  • {1, 2, 3, 4} ⊆ {1, 2, 3, 4}.

The empty set is a subset of every set,[31] and every set is a subset of itself:[38]

  • ∅ ⊆ A.
  • AA.

Euler and Venn diagrams[edit]

A is a subset of B.
B is a superset of A.

An Euler diagram is a graphical representation of a collection of sets; each set is depicted as a planar region enclosed by a loop, with its elements inside. If A is a subset of B, then the region representing A is completely inside the region representing B. If two sets have no elements in common, the regions do not overlap.

A Venn diagram, in contrast, is a graphical representation of n sets in which the n loops divide the plane into 2n zones such that for each way of selecting some of the n sets (possibly all or none), there is a zone for the elements that belong to all the selected sets and none of the others. For example, if the sets are A, B, and C, there should be a zone for the elements that are inside A and C and outside B (even if such elements do not exist).

Special sets of numbers in mathematics[edit]

There are sets of such mathematical importance, to which mathematicians refer so frequently, that they have acquired special names and notational conventions to identify them.

Many of these important sets are represented in mathematical texts using bold (e.g. {displaystyle mathbf {Z} }) or blackboard bold (e.g. mathbb {Z} ) typeface.[39] These include

  • {displaystyle mathbf {N} } or mathbb N, the set of all natural numbers: {displaystyle mathbf {N} ={0,1,2,3,...}} (often, authors exclude 0);[39]
  • {displaystyle mathbf {Z} } or mathbb {Z} , the set of all integers (whether positive, negative or zero): {displaystyle mathbf {Z} ={...,-2,-1,0,1,2,3,...}};[39]
  • {displaystyle mathbf {Q} } or mathbb {Q} , the set of all rational numbers (that is, the set of all proper and improper fractions): {displaystyle mathbf {Q} =left{{frac {a}{b}}mid a,bin mathbf {Z} ,bneq 0right}}. For example, 7/4Q and 5 = 5/1Q;[39]
  • {displaystyle mathbf {R} } or mathbb {R} , the set of all real numbers, including all rational numbers and all irrational numbers (which include algebraic numbers such as {sqrt {2}} that cannot be rewritten as fractions, as well as transcendental numbers such as π and e);[39]
  • {displaystyle mathbf {C} } or mathbb {C} , the set of all complex numbers: C = {a + bi | a, bR}, for example, 1 + 2iC.[39]

Each of the above sets of numbers has an infinite number of elements. Each is a subset of the sets listed below it.

Sets of positive or negative numbers are sometimes denoted by superscript plus and minus signs, respectively. For example, {displaystyle mathbf {Q} ^{+}} represents the set of positive rational numbers.

Functions[edit]

A function (or mapping) from a set A to a set B is a rule that assigns to each «input» element of A an «output» that is an element of B; more formally, a function is a special kind of relation, one that relates each element of A to exactly one element of B. A function is called

  • injective (or one-to-one) if it maps any two different elements of A to different elements of B,
  • surjective (or onto) if for every element of B, there is at least one element of A that maps to it, and
  • bijective (or a one-to-one correspondence) if the function is both injective and surjective — in this case, each element of A is paired with a unique element of B, and each element of B is paired with a unique element of A, so that there are no unpaired elements.

An injective function is called an injection, a surjective function is called a surjection, and a bijective function is called a bijection or one-to-one correspondence.

Cardinality[edit]

The cardinality of a set S, denoted |S|, is the number of members of S.[40] For example, if B = {blue, white, red}, then |B| = 3. Repeated members in roster notation are not counted,[41][42] so |{blue, white, red, blue, white}| = 3, too.

More formally, two sets share the same cardinality if there exists a one-to-one correspondence between them.

The cardinality of the empty set is zero.[43]

Infinite sets and infinite cardinality[edit]

The list of elements of some sets is endless, or infinite. For example, the set mathbb {N} of natural numbers is infinite.[26] In fact, all the special sets of numbers mentioned in the section above are infinite. Infinite sets have infinite cardinality.

Some infinite cardinalities are greater than others. Arguably one of the most significant results from set theory is that the set of real numbers has greater cardinality than the set of natural numbers.[44] Sets with cardinality less than or equal to that of mathbb {N} are called countable sets; these are either finite sets or countably infinite sets (sets of the same cardinality as mathbb {N} ); some authors use «countable» to mean «countably infinite». Sets with cardinality strictly greater than that of mathbb {N} are called uncountable sets.

However, it can be shown that the cardinality of a straight line (i.e., the number of points on a line) is the same as the cardinality of any segment of that line, of the entire plane, and indeed of any finite-dimensional Euclidean space.[45]

The continuum hypothesis[edit]

The continuum hypothesis, formulated by Georg Cantor in 1878, is the statement that there is no set with cardinality strictly between the cardinality of the natural numbers and the cardinality of a straight line.[46] In 1963, Paul Cohen proved that the continuum hypothesis is independent of the axiom system ZFC consisting of Zermelo–Fraenkel set theory with the axiom of choice.[47] (ZFC is the most widely-studied version of axiomatic set theory.)

Power sets[edit]

The power set of a set S is the set of all subsets of S.[26] The empty set and S itself are elements of the power set of S, because these are both subsets of S. For example, the power set of {1, 2, 3} is {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. The power set of a set S is commonly written as P(S) or 2S.[26][48][15]

If S has n elements, then P(S) has 2n elements.[49] For example, {1, 2, 3} has three elements, and its power set has 23 = 8 elements, as shown above.

If S is infinite (whether countable or uncountable), then P(S) is uncountable. Moreover, the power set is always strictly «bigger» than the original set, in the sense that any attempt to pair up the elements of S with the elements of P(S) will leave some elements of P(S) unpaired. (There is never a bijection from S onto P(S).)[50]

Partitions[edit]

A partition of a set S is a set of nonempty subsets of S, such that every element x in S is in exactly one of these subsets. That is, the subsets are pairwise disjoint (meaning any two sets of the partition contain no element in common), and the union of all the subsets of the partition is S.[51][52]

Basic operations[edit]

Suppose that a universal set U (a set containing all elements being discussed) has been fixed, and that A is a subset of U.

  • The complement of A is the set of all elements (of U) that do not belong to A. It may be denoted Ac or A. In set-builder notation, {displaystyle A^{text{c}}={ain U:anotin A}}. The complement may also be called the absolute complement to distinguish it from the relative complement below. Example: If the universal set is taken to be the set of integers, then the complement of the set of even integers is the set of odd integers.

The union of A and B, denoted AB

The intersection of A and B, denoted AB

The symmetric difference of A and B

Given any two sets A and B,

  • their union AB is the set of all things that are members of A or B or both.
  • their intersection AB is the set of all things that are members of both A and B. If AB = ∅, then A and B are said to be disjoint.
  • the set difference A B (also written AB) is the set of all things that belong to A but not B. Especially when B is a subset of A, it is also called the relative complement of B in A.
  • their symmetric difference A Δ B is the set of all things that belong to A or B but not both. One has {displaystyle A,Delta ,B=(Asetminus B)cup (Bsetminus A)}.
  • their cartesian product A × B is the set of all ordered pairs (a,b) such that a is an element of A and b is an element of B.

Examples:

  • {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}.
  • {1, 2, 3} ∩ {3, 4, 5} = {3}.
  • {1, 2, 3} − {3, 4, 5} = {1, 2}.
  • {1, 2, 3} Δ {3, 4, 5} = {1, 2, 4, 5}.
  • {a, b} × {1, 2, 3} = {(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)}.

The operations above satisfy many identities. For example, one of De Morgan’s laws states that (AB)′ = A′ ∩ B (that is, the elements outside the union of A and B are the elements that are outside A and outside B).

The cardinality of A × B is the product of the cardinalities of A and B.
(This is an elementary fact when A and B are finite. When one or both are infinite, multiplication of cardinal numbers is defined to make this true.)

The power set of any set becomes a Boolean ring with symmetric difference as the addition of the ring and intersection as the multiplication of the ring.

Applications[edit]

Sets are ubiquitous in modern mathematics. For example, structures in abstract algebra, such as groups, fields and rings, are sets closed under one or more operations.

One of the main applications of naive set theory is in the construction of relations. A relation from a domain A to a codomain B is a subset of the Cartesian product A × B. For example, considering the set S = {rock, paper, scissors} of shapes in the game of the same name, the relation «beats» from S to S is the set B = {(scissors,paper), (paper,rock), (rock,scissors)}; thus x beats y in the game if the pair (x,y) is a member of B. Another example is the set F of all pairs (x, x2), where x is real. This relation is a subset of R × R, because the set of all squares is subset of the set of all real numbers. Since for every x in R, one and only one pair (x,…) is found in F, it is called a function. In functional notation, this relation can be written as F(x) = x2.

Principle of inclusion and exclusion[edit]

The inclusion-exclusion principle for two finite sets states that the size of their union is the sum of the sizes of the sets minus the size of their intersection.

The inclusion–exclusion principle is a technique for counting the elements in a union of two finite sets in terms of the sizes of the two sets and their intersection. It can be expressed symbolically as

{displaystyle |Acup B|=|A|+|B|-|Acap B|.}

A more general form of the principle gives the cardinality of any finite union of finite sets:

{displaystyle {begin{aligned}left|A_{1}cup A_{2}cup A_{3}cup ldots cup A_{n}right|=&left(left|A_{1}right|+left|A_{2}right|+left|A_{3}right|+ldots left|A_{n}right|right)\&{}-left(left|A_{1}cap A_{2}right|+left|A_{1}cap A_{3}right|+ldots left|A_{n-1}cap A_{n}right|right)\&{}+ldots \&{}+left(-1right)^{n-1}left(left|A_{1}cap A_{2}cap A_{3}cap ldots cap A_{n}right|right).end{aligned}}}

See also[edit]

  • Algebra of sets
  • Alternative set theory
  • Category of sets
  • Class (set theory)
  • Dense set
  • Family of sets
  • Fuzzy set
  • Internal set
  • Mereology
  • Multiset
  • Principia Mathematica
  • Rough set

Notes[edit]

  1. ^ a b Cantor, Georg; Jourdain, Philip E.B. (Translator) (1895). «beiträge zur begründung der transfiniten Mengenlehre» [contributions to the founding of the theory of transfinite numbers]. Mathematische Annalen (in German). New York Dover Publications (1954 English translation). xlvi, xlix: 481–512, 207–246. Archived from the original on 2011-06-10. By an aggregate (Menge) we are to understand any collection into a whole (Zusammenfassung zu einem Gansen) M of definite and separate objects m (p.85)
  2. ^ P. K. Jain; Khalil Ahmad; Om P. Ahuja (1995). Functional Analysis. New Age International. p. 1. ISBN 978-81-224-0801-0.
  3. ^ Samuel Goldberg (1 January 1986). Probability: An Introduction. Courier Corporation. p. 2. ISBN 978-0-486-65252-8.
  4. ^ Thomas H. Cormen; Charles E Leiserson; Ronald L Rivest; Clifford Stein (2001). Introduction To Algorithms. MIT Press. p. 1070. ISBN 978-0-262-03293-3.
  5. ^ a b c Halmos 1960, p. 1.
  6. ^ a b Stoll, Robert (1974). Sets, Logic and Axiomatic Theories. W. H. Freeman and Company. pp. 5. ISBN 9780716704577.
  7. ^ José Ferreirós (16 August 2007). Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Birkhäuser Basel. ISBN 978-3-7643-8349-7.
  8. ^ Steve Russ (9 December 2004). The Mathematical Works of Bernard Bolzano. OUP Oxford. ISBN 978-0-19-151370-1.
  9. ^ William Ewald; William Bragg Ewald (1996). From Kant to Hilbert Volume 1: A Source Book in the Foundations of Mathematics. OUP Oxford. p. 249. ISBN 978-0-19-850535-8.
  10. ^ Paul Rusnock; Jan Sebestík (25 April 2019). Bernard Bolzano: His Life and Work. OUP Oxford. p. 430. ISBN 978-0-19-255683-7.
  11. ^ Bertrand Russell (1903) The Principles of Mathematics, chapter VI: Classes
  12. ^ a b Halmos 1960, p. 2.
  13. ^ Jose Ferreiros (1 November 2001). Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Springer Science & Business Media. ISBN 978-3-7643-5749-8.
  14. ^ Seymor Lipschutz; Marc Lipson (22 June 1997). Schaum’s Outline of Discrete Mathematics. McGraw Hill Professional. p. 1. ISBN 978-0-07-136841-4.
  15. ^ a b c «Introduction to Sets». www.mathsisfun.com. Retrieved 2020-08-19.
  16. ^ Charles Roberts (24 June 2009). Introduction to Mathematical Proofs: A Transition. CRC Press. p. 45. ISBN 978-1-4200-6956-3.
  17. ^ David Johnson; David B. Johnson; Thomas A. Mowry (June 2004). Finite Mathematics: Practical Applications (Docutech Version). W. H. Freeman. p. 220. ISBN 978-0-7167-6297-3.
  18. ^ Ignacio Bello; Anton Kaul; Jack R. Britton (29 January 2013). Topics in Contemporary Mathematics. Cengage Learning. p. 47. ISBN 978-1-133-10742-2.
  19. ^ Susanna S. Epp (4 August 2010). Discrete Mathematics with Applications. Cengage Learning. p. 13. ISBN 978-0-495-39132-6.
  20. ^ Stephen B. Maurer; Anthony Ralston (21 January 2005). Discrete Algorithmic Mathematics. CRC Press. p. 11. ISBN 978-1-4398-6375-6.
  21. ^ D. Van Dalen; H. C. Doets; H. De Swart (9 May 2014). Sets: Naïve, Axiomatic and Applied: A Basic Compendium with Exercises for Use in Set Theory for Non Logicians, Working and Teaching Mathematicians and Students. Elsevier Science. p. 1. ISBN 978-1-4831-5039-0.
  22. ^ Alfred Basta; Stephan DeLong; Nadine Basta (1 January 2013). Mathematics for Information Technology. Cengage Learning. p. 3. ISBN 978-1-285-60843-3.
  23. ^ Laura Bracken; Ed Miller (15 February 2013). Elementary Algebra. Cengage Learning. p. 36. ISBN 978-0-618-95134-5.
  24. ^ Halmos 1960, p. 4.
  25. ^ a b c Frank Ruda (6 October 2011). Hegel’s Rabble: An Investigation into Hegel’s Philosophy of Right. Bloomsbury Publishing. p. 151. ISBN 978-1-4411-7413-0.
  26. ^ a b c d e John F. Lucas (1990). Introduction to Abstract Mathematics. Rowman & Littlefield. p. 108. ISBN 978-0-912675-73-2.
  27. ^ Weisstein, Eric W. «Set». mathworld.wolfram.com. Retrieved 2020-08-19.
  28. ^ Ralph C. Steinlage (1987). College Algebra. West Publishing Company. ISBN 978-0-314-29531-6.
  29. ^ a b Marek Capinski; Peter E. Kopp (2004). Measure, Integral and Probability. Springer Science & Business Media. p. 2. ISBN 978-1-85233-781-0.
  30. ^ «Set Symbols». www.mathsisfun.com. Retrieved 2020-08-19.
  31. ^ a b Halmos 1960, p. 8.
  32. ^ K.T. Leung; Doris Lai-chue Chen (1 July 1992). Elementary Set Theory, Part I/II. Hong Kong University Press. p. 27. ISBN 978-962-209-026-2.
  33. ^ Aggarwal, M.L. (2021). «1. Sets». Understanding ISC Mathematics Class XI. Vol. 1. Arya Publications (Avichal Publishing Company). p. A=3.
  34. ^ Sourendra Nath, De (January 2015). «Unit-1 Sets and Functions: 1. Set Theory». Chhaya Ganit (Ekadash Shreni). Scholar Books Pvt. Ltd. p. 5.
  35. ^ Halmos 1960, Sect.2.
  36. ^ a b Felix Hausdorff (2005). Set Theory. American Mathematical Soc. p. 30. ISBN 978-0-8218-3835-8.
  37. ^ Peter Comninos (6 April 2010). Mathematical and Computer Programming Techniques for Computer Graphics. Springer Science & Business Media. p. 7. ISBN 978-1-84628-292-8.
  38. ^ a b Halmos 1960, p. 3.
  39. ^ a b c d e f George Tourlakis (13 February 2003). Lectures in Logic and Set Theory: Volume 2, Set Theory. Cambridge University Press. p. 137. ISBN 978-1-139-43943-5.
  40. ^ Yiannis N. Moschovakis (1994). Notes on Set Theory. Springer Science & Business Media. ISBN 978-3-540-94180-4.
  41. ^ Arthur Charles Fleck (2001). Formal Models of Computation: The Ultimate Limits of Computing. World Scientific. p. 3. ISBN 978-981-02-4500-9.
  42. ^ William Johnston (25 September 2015). The Lebesgue Integral for Undergraduates. The Mathematical Association of America. p. 7. ISBN 978-1-939512-07-9.
  43. ^ Karl J. Smith (7 January 2008). Mathematics: Its Power and Utility. Cengage Learning. p. 401. ISBN 978-0-495-38913-2.
  44. ^ John Stillwell (16 October 2013). The Real Numbers: An Introduction to Set Theory and Analysis. Springer Science & Business Media. ISBN 978-3-319-01577-4.
  45. ^ David Tall (11 April 2006). Advanced Mathematical Thinking. Springer Science & Business Media. p. 211. ISBN 978-0-306-47203-9.
  46. ^ Cantor, Georg (1878). «Ein Beitrag zur Mannigfaltigkeitslehre». Journal für die Reine und Angewandte Mathematik. 1878 (84): 242–258. doi:10.1515/crll.1878.84.242.
  47. ^
    Cohen, Paul J. (December 15, 1963). «The Independence of the Continuum Hypothesis». Proceedings of the National Academy of Sciences of the United States of America. 50 (6): 1143–1148. Bibcode:1963PNAS…50.1143C. doi:10.1073/pnas.50.6.1143. JSTOR 71858. PMC 221287. PMID 16578557.
  48. ^ Halmos 1960, p. 19.
  49. ^ Halmos 1960, p. 20.
  50. ^ Edward B. Burger; Michael Starbird (18 August 2004). The Heart of Mathematics: An invitation to effective thinking. Springer Science & Business Media. p. 183. ISBN 978-1-931914-41-3.
  51. ^ Toufik Mansour (27 July 2012). Combinatorics of Set Partitions. CRC Press. ISBN 978-1-4398-6333-6.
  52. ^ Halmos 1960, p. 28.

References[edit]

  • Dauben, Joseph W. (1979). Georg Cantor: His Mathematics and Philosophy of the Infinite. Boston: Harvard University Press. ISBN 0-691-02447-2.
  • Halmos, Paul R. (1960). Naive Set Theory. Princeton, N.J.: Van Nostrand. ISBN 0-387-90092-6.
  • Stoll, Robert R. (1979). Set Theory and Logic. Mineola, N.Y.: Dover Publications. ISBN 0-486-63829-4.
  • Velleman, Daniel (2006). How To Prove It: A Structured Approach. Cambridge University Press. ISBN 0-521-67599-5.

External links[edit]

  • The dictionary definition of set at Wiktionary
  • Cantor’s «Beiträge zur Begründung der transfiniten Mengenlehre» (in German)

This article is about what mathematicians call «intuitive» or «naive» set theory. For a more detailed account, see Naive set theory. For a rigorous modern axiomatic treatment of sets, see Set theory.

A set is the mathematical model for a collection of different[1] things;[2][3][4] a set contains elements or members, which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets.[5] The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements.[6]

Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century.[5]

History[edit]

The concept of a set emerged in mathematics at the end of the 19th century.[7] The German word for set, Menge, was coined by Bernard Bolzano in his work Paradoxes of the Infinite.[8][9][10]

Passage with a translation of the original set definition of Georg Cantor. The German word Menge for set is translated with aggregate here.

Georg Cantor, one of the founders of set theory, gave the following definition at the beginning of his Beiträge zur Begründung der transfiniten Mengenlehre:[1]

A set is a gathering together into a whole of definite, distinct objects of our perception or our thought—which are called elements of the set.

Bertrand Russell called a set a class:[11]

When mathematicians deal with what they call a manifold, aggregate, Menge, ensemble, or some equivalent name, it is common, especially where the number of terms involved is finite, to regard the object in question (which is in fact a class) as defined by the enumeration of its terms, and as consisting possibly of a single term, which in that case is the class.

Naive set theory[edit]

The foremost property of a set is that it can have elements, also called members. Two sets are equal when they have the same elements. More precisely, sets A and B are equal if every element of A is an element of B, and every element of B is an element of A; this property is called the extensionality of sets.[12]

The simple concept of a set has proved enormously useful in mathematics, but paradoxes arise if no restrictions are placed on how sets can be constructed:

  • Russell’s paradox shows that the «set of all sets that do not contain themselves«, i.e., {x | x is a set and xx}, cannot exist.
  • Cantor’s paradox shows that «the set of all sets» cannot exist.

Naïve set theory defines a set as any well-defined collection of distinct elements, but problems arise from the vagueness of the term well-defined.

Axiomatic set theory[edit]

In subsequent efforts to resolve these paradoxes since the time of the original formulation of naïve set theory, the properties of sets have been defined by axioms. Axiomatic set theory takes the concept of a set as a primitive notion.[13] The purpose of the axioms is to provide a basic framework from which to deduce the truth or falsity of particular mathematical propositions (statements) about sets, using first-order logic. According to Gödel’s incompleteness theorems however, it is not possible to use first-order logic to prove any such particular axiomatic set theory is free from paradox.[citation needed]

How sets are defined and set notation[edit]

Mathematical texts commonly denote sets by capital letters[14][5] in italic, such as A, B, C.[15] A set may also be called a collection or family, especially when its elements are themselves sets.

Roster notation[edit]

Roster or enumeration notation defines a set by listing its elements between curly brackets, separated by commas:[16][17][18][19]

A = {4, 2, 1, 3}

B = {blue, white, red}.

In a set, all that matters is whether each element is in it or not, so the ordering of the elements in roster notation is irrelevant (in contrast, in a sequence, a tuple, or a permutation of a set, the ordering of the terms matters). For example, {2, 4, 6} and {4, 6, 4, 2} represent the same set.[20][15][21]

For sets with many elements, especially those following an implicit pattern, the list of members can be abbreviated using an ellipsis ‘‘.[22][23] For instance, the set of the first thousand positive integers may be specified in roster notation as

{1, 2, 3, …, 1000}.

Infinite sets in roster notation[edit]

An infinite set is a set with an endless list of elements. To describe an infinite set in roster notation, an ellipsis is placed at the end of the list, or at both ends, to indicate that the list continues forever. For example, the set of nonnegative integers is

{0, 1, 2, 3, 4, …},

and the set of all integers is

{…, −3, −2, −1, 0, 1, 2, 3, …}.

Semantic definition[edit]

Another way to define a set is to use a rule to determine what the elements are:

Let A be the set whose members are the first four positive integers.

Let B be the set of colors of the French flag.

Such a definition is called a semantic description.[24][25]

Set-builder notation[edit]

Set-builder notation specifies a set as a selection from a larger set, determined by a condition on the elements.[25][26][27] For example, a set F can be defined as follows:

{displaystyle F={nmid n{text{ is an integer, and }}0leq nleq 19}.}

In this notation, the vertical bar «|» means «such that», and the description can be interpreted as «F is the set of all numbers n such that n is an integer in the range from 0 to 19 inclusive». Some authors use a colon «:» instead of the vertical bar.[28]

Classifying methods of definition[edit]

Philosophy uses specific terms to classify types of definitions:

  • An intensional definition uses a rule to determine membership. Semantic definitions and definitions using set-builder notation are examples.
  • An extensional definition describes a set by listing all its elements.[25] Such definitions are also called enumerative.
  • An ostensive definition is one that describes a set by giving examples of elements; a roster involving an ellipsis would be an example.

Membership[edit]

If B is a set and x is an element of B, this is written in shorthand as xB, which can also be read as «x belongs to B«, or «x is in B«.[12] The statement «y is not an element of B» is written as yB, which can also be read as «y is not in B«.[29][30]

For example, with respect to the sets A = {1, 2, 3, 4}, B = {blue, white, red}, and F = {n | n is an integer, and 0 ≤ n ≤ 19},

4 ∈ A and 12 ∈ F; and

20 ∉ F and green ∉ B.

The empty set[edit]

The empty set (or null set) is the unique set that has no members. It is denoted or emptyset or { }[31][32] or ϕ[33] (or ϕ).[34]

Singleton sets[edit]

A singleton set is a set with exactly one element; such a set may also be called a unit set.[6] Any such set can be written as {x}, where x is the element.
The set {x} and the element x mean different things; Halmos[35] draws the analogy that a box containing a hat is not the same as the hat.

Subsets[edit]

If every element of set A is also in B, then A is described as being a subset of B, or contained in B, written AB,[36] or BA.[37] The latter notation may be read B contains A, B includes A, or B is a superset of A. The relationship between sets established by ⊆ is called inclusion or containment. Two sets are equal if they contain each other: AB and BA is equivalent to A = B.[26]

If A is a subset of B, but A is not equal to B, then A is called a proper subset of B. This can be written AB. Likewise, BA means B is a proper superset of A, i.e. B contains A, and is not equal to A.

A third pair of operators ⊂ and ⊃ are used differently by different authors: some authors use AB and BA to mean A is any subset of B (and not necessarily a proper subset),[38][29] while others reserve AB and BA for cases where A is a proper subset of B.[36]

Examples:

  • The set of all humans is a proper subset of the set of all mammals.
  • {1, 3} ⊂ {1, 2, 3, 4}.
  • {1, 2, 3, 4} ⊆ {1, 2, 3, 4}.

The empty set is a subset of every set,[31] and every set is a subset of itself:[38]

  • ∅ ⊆ A.
  • AA.

Euler and Venn diagrams[edit]

A is a subset of B.
B is a superset of A.

An Euler diagram is a graphical representation of a collection of sets; each set is depicted as a planar region enclosed by a loop, with its elements inside. If A is a subset of B, then the region representing A is completely inside the region representing B. If two sets have no elements in common, the regions do not overlap.

A Venn diagram, in contrast, is a graphical representation of n sets in which the n loops divide the plane into 2n zones such that for each way of selecting some of the n sets (possibly all or none), there is a zone for the elements that belong to all the selected sets and none of the others. For example, if the sets are A, B, and C, there should be a zone for the elements that are inside A and C and outside B (even if such elements do not exist).

Special sets of numbers in mathematics[edit]

There are sets of such mathematical importance, to which mathematicians refer so frequently, that they have acquired special names and notational conventions to identify them.

Many of these important sets are represented in mathematical texts using bold (e.g. {displaystyle mathbf {Z} }) or blackboard bold (e.g. mathbb {Z} ) typeface.[39] These include

  • {displaystyle mathbf {N} } or mathbb N, the set of all natural numbers: {displaystyle mathbf {N} ={0,1,2,3,...}} (often, authors exclude 0);[39]
  • {displaystyle mathbf {Z} } or mathbb {Z} , the set of all integers (whether positive, negative or zero): {displaystyle mathbf {Z} ={...,-2,-1,0,1,2,3,...}};[39]
  • {displaystyle mathbf {Q} } or mathbb {Q} , the set of all rational numbers (that is, the set of all proper and improper fractions): {displaystyle mathbf {Q} =left{{frac {a}{b}}mid a,bin mathbf {Z} ,bneq 0right}}. For example, 7/4Q and 5 = 5/1Q;[39]
  • {displaystyle mathbf {R} } or mathbb {R} , the set of all real numbers, including all rational numbers and all irrational numbers (which include algebraic numbers such as {sqrt {2}} that cannot be rewritten as fractions, as well as transcendental numbers such as π and e);[39]
  • {displaystyle mathbf {C} } or mathbb {C} , the set of all complex numbers: C = {a + bi | a, bR}, for example, 1 + 2iC.[39]

Each of the above sets of numbers has an infinite number of elements. Each is a subset of the sets listed below it.

Sets of positive or negative numbers are sometimes denoted by superscript plus and minus signs, respectively. For example, {displaystyle mathbf {Q} ^{+}} represents the set of positive rational numbers.

Functions[edit]

A function (or mapping) from a set A to a set B is a rule that assigns to each «input» element of A an «output» that is an element of B; more formally, a function is a special kind of relation, one that relates each element of A to exactly one element of B. A function is called

  • injective (or one-to-one) if it maps any two different elements of A to different elements of B,
  • surjective (or onto) if for every element of B, there is at least one element of A that maps to it, and
  • bijective (or a one-to-one correspondence) if the function is both injective and surjective — in this case, each element of A is paired with a unique element of B, and each element of B is paired with a unique element of A, so that there are no unpaired elements.

An injective function is called an injection, a surjective function is called a surjection, and a bijective function is called a bijection or one-to-one correspondence.

Cardinality[edit]

The cardinality of a set S, denoted |S|, is the number of members of S.[40] For example, if B = {blue, white, red}, then |B| = 3. Repeated members in roster notation are not counted,[41][42] so |{blue, white, red, blue, white}| = 3, too.

More formally, two sets share the same cardinality if there exists a one-to-one correspondence between them.

The cardinality of the empty set is zero.[43]

Infinite sets and infinite cardinality[edit]

The list of elements of some sets is endless, or infinite. For example, the set mathbb {N} of natural numbers is infinite.[26] In fact, all the special sets of numbers mentioned in the section above are infinite. Infinite sets have infinite cardinality.

Some infinite cardinalities are greater than others. Arguably one of the most significant results from set theory is that the set of real numbers has greater cardinality than the set of natural numbers.[44] Sets with cardinality less than or equal to that of mathbb {N} are called countable sets; these are either finite sets or countably infinite sets (sets of the same cardinality as mathbb {N} ); some authors use «countable» to mean «countably infinite». Sets with cardinality strictly greater than that of mathbb {N} are called uncountable sets.

However, it can be shown that the cardinality of a straight line (i.e., the number of points on a line) is the same as the cardinality of any segment of that line, of the entire plane, and indeed of any finite-dimensional Euclidean space.[45]

The continuum hypothesis[edit]

The continuum hypothesis, formulated by Georg Cantor in 1878, is the statement that there is no set with cardinality strictly between the cardinality of the natural numbers and the cardinality of a straight line.[46] In 1963, Paul Cohen proved that the continuum hypothesis is independent of the axiom system ZFC consisting of Zermelo–Fraenkel set theory with the axiom of choice.[47] (ZFC is the most widely-studied version of axiomatic set theory.)

Power sets[edit]

The power set of a set S is the set of all subsets of S.[26] The empty set and S itself are elements of the power set of S, because these are both subsets of S. For example, the power set of {1, 2, 3} is {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. The power set of a set S is commonly written as P(S) or 2S.[26][48][15]

If S has n elements, then P(S) has 2n elements.[49] For example, {1, 2, 3} has three elements, and its power set has 23 = 8 elements, as shown above.

If S is infinite (whether countable or uncountable), then P(S) is uncountable. Moreover, the power set is always strictly «bigger» than the original set, in the sense that any attempt to pair up the elements of S with the elements of P(S) will leave some elements of P(S) unpaired. (There is never a bijection from S onto P(S).)[50]

Partitions[edit]

A partition of a set S is a set of nonempty subsets of S, such that every element x in S is in exactly one of these subsets. That is, the subsets are pairwise disjoint (meaning any two sets of the partition contain no element in common), and the union of all the subsets of the partition is S.[51][52]

Basic operations[edit]

Suppose that a universal set U (a set containing all elements being discussed) has been fixed, and that A is a subset of U.

  • The complement of A is the set of all elements (of U) that do not belong to A. It may be denoted Ac or A. In set-builder notation, {displaystyle A^{text{c}}={ain U:anotin A}}. The complement may also be called the absolute complement to distinguish it from the relative complement below. Example: If the universal set is taken to be the set of integers, then the complement of the set of even integers is the set of odd integers.

The union of A and B, denoted AB

The intersection of A and B, denoted AB

The symmetric difference of A and B

Given any two sets A and B,

  • their union AB is the set of all things that are members of A or B or both.
  • their intersection AB is the set of all things that are members of both A and B. If AB = ∅, then A and B are said to be disjoint.
  • the set difference A B (also written AB) is the set of all things that belong to A but not B. Especially when B is a subset of A, it is also called the relative complement of B in A.
  • their symmetric difference A Δ B is the set of all things that belong to A or B but not both. One has {displaystyle A,Delta ,B=(Asetminus B)cup (Bsetminus A)}.
  • their cartesian product A × B is the set of all ordered pairs (a,b) such that a is an element of A and b is an element of B.

Examples:

  • {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}.
  • {1, 2, 3} ∩ {3, 4, 5} = {3}.
  • {1, 2, 3} − {3, 4, 5} = {1, 2}.
  • {1, 2, 3} Δ {3, 4, 5} = {1, 2, 4, 5}.
  • {a, b} × {1, 2, 3} = {(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)}.

The operations above satisfy many identities. For example, one of De Morgan’s laws states that (AB)′ = A′ ∩ B (that is, the elements outside the union of A and B are the elements that are outside A and outside B).

The cardinality of A × B is the product of the cardinalities of A and B.
(This is an elementary fact when A and B are finite. When one or both are infinite, multiplication of cardinal numbers is defined to make this true.)

The power set of any set becomes a Boolean ring with symmetric difference as the addition of the ring and intersection as the multiplication of the ring.

Applications[edit]

Sets are ubiquitous in modern mathematics. For example, structures in abstract algebra, such as groups, fields and rings, are sets closed under one or more operations.

One of the main applications of naive set theory is in the construction of relations. A relation from a domain A to a codomain B is a subset of the Cartesian product A × B. For example, considering the set S = {rock, paper, scissors} of shapes in the game of the same name, the relation «beats» from S to S is the set B = {(scissors,paper), (paper,rock), (rock,scissors)}; thus x beats y in the game if the pair (x,y) is a member of B. Another example is the set F of all pairs (x, x2), where x is real. This relation is a subset of R × R, because the set of all squares is subset of the set of all real numbers. Since for every x in R, one and only one pair (x,…) is found in F, it is called a function. In functional notation, this relation can be written as F(x) = x2.

Principle of inclusion and exclusion[edit]

The inclusion-exclusion principle for two finite sets states that the size of their union is the sum of the sizes of the sets minus the size of their intersection.

The inclusion–exclusion principle is a technique for counting the elements in a union of two finite sets in terms of the sizes of the two sets and their intersection. It can be expressed symbolically as

{displaystyle |Acup B|=|A|+|B|-|Acap B|.}

A more general form of the principle gives the cardinality of any finite union of finite sets:

{displaystyle {begin{aligned}left|A_{1}cup A_{2}cup A_{3}cup ldots cup A_{n}right|=&left(left|A_{1}right|+left|A_{2}right|+left|A_{3}right|+ldots left|A_{n}right|right)\&{}-left(left|A_{1}cap A_{2}right|+left|A_{1}cap A_{3}right|+ldots left|A_{n-1}cap A_{n}right|right)\&{}+ldots \&{}+left(-1right)^{n-1}left(left|A_{1}cap A_{2}cap A_{3}cap ldots cap A_{n}right|right).end{aligned}}}

See also[edit]

  • Algebra of sets
  • Alternative set theory
  • Category of sets
  • Class (set theory)
  • Dense set
  • Family of sets
  • Fuzzy set
  • Internal set
  • Mereology
  • Multiset
  • Principia Mathematica
  • Rough set

Notes[edit]

  1. ^ a b Cantor, Georg; Jourdain, Philip E.B. (Translator) (1895). «beiträge zur begründung der transfiniten Mengenlehre» [contributions to the founding of the theory of transfinite numbers]. Mathematische Annalen (in German). New York Dover Publications (1954 English translation). xlvi, xlix: 481–512, 207–246. Archived from the original on 2011-06-10. By an aggregate (Menge) we are to understand any collection into a whole (Zusammenfassung zu einem Gansen) M of definite and separate objects m (p.85)
  2. ^ P. K. Jain; Khalil Ahmad; Om P. Ahuja (1995). Functional Analysis. New Age International. p. 1. ISBN 978-81-224-0801-0.
  3. ^ Samuel Goldberg (1 January 1986). Probability: An Introduction. Courier Corporation. p. 2. ISBN 978-0-486-65252-8.
  4. ^ Thomas H. Cormen; Charles E Leiserson; Ronald L Rivest; Clifford Stein (2001). Introduction To Algorithms. MIT Press. p. 1070. ISBN 978-0-262-03293-3.
  5. ^ a b c Halmos 1960, p. 1.
  6. ^ a b Stoll, Robert (1974). Sets, Logic and Axiomatic Theories. W. H. Freeman and Company. pp. 5. ISBN 9780716704577.
  7. ^ José Ferreirós (16 August 2007). Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Birkhäuser Basel. ISBN 978-3-7643-8349-7.
  8. ^ Steve Russ (9 December 2004). The Mathematical Works of Bernard Bolzano. OUP Oxford. ISBN 978-0-19-151370-1.
  9. ^ William Ewald; William Bragg Ewald (1996). From Kant to Hilbert Volume 1: A Source Book in the Foundations of Mathematics. OUP Oxford. p. 249. ISBN 978-0-19-850535-8.
  10. ^ Paul Rusnock; Jan Sebestík (25 April 2019). Bernard Bolzano: His Life and Work. OUP Oxford. p. 430. ISBN 978-0-19-255683-7.
  11. ^ Bertrand Russell (1903) The Principles of Mathematics, chapter VI: Classes
  12. ^ a b Halmos 1960, p. 2.
  13. ^ Jose Ferreiros (1 November 2001). Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics. Springer Science & Business Media. ISBN 978-3-7643-5749-8.
  14. ^ Seymor Lipschutz; Marc Lipson (22 June 1997). Schaum’s Outline of Discrete Mathematics. McGraw Hill Professional. p. 1. ISBN 978-0-07-136841-4.
  15. ^ a b c «Introduction to Sets». www.mathsisfun.com. Retrieved 2020-08-19.
  16. ^ Charles Roberts (24 June 2009). Introduction to Mathematical Proofs: A Transition. CRC Press. p. 45. ISBN 978-1-4200-6956-3.
  17. ^ David Johnson; David B. Johnson; Thomas A. Mowry (June 2004). Finite Mathematics: Practical Applications (Docutech Version). W. H. Freeman. p. 220. ISBN 978-0-7167-6297-3.
  18. ^ Ignacio Bello; Anton Kaul; Jack R. Britton (29 January 2013). Topics in Contemporary Mathematics. Cengage Learning. p. 47. ISBN 978-1-133-10742-2.
  19. ^ Susanna S. Epp (4 August 2010). Discrete Mathematics with Applications. Cengage Learning. p. 13. ISBN 978-0-495-39132-6.
  20. ^ Stephen B. Maurer; Anthony Ralston (21 January 2005). Discrete Algorithmic Mathematics. CRC Press. p. 11. ISBN 978-1-4398-6375-6.
  21. ^ D. Van Dalen; H. C. Doets; H. De Swart (9 May 2014). Sets: Naïve, Axiomatic and Applied: A Basic Compendium with Exercises for Use in Set Theory for Non Logicians, Working and Teaching Mathematicians and Students. Elsevier Science. p. 1. ISBN 978-1-4831-5039-0.
  22. ^ Alfred Basta; Stephan DeLong; Nadine Basta (1 January 2013). Mathematics for Information Technology. Cengage Learning. p. 3. ISBN 978-1-285-60843-3.
  23. ^ Laura Bracken; Ed Miller (15 February 2013). Elementary Algebra. Cengage Learning. p. 36. ISBN 978-0-618-95134-5.
  24. ^ Halmos 1960, p. 4.
  25. ^ a b c Frank Ruda (6 October 2011). Hegel’s Rabble: An Investigation into Hegel’s Philosophy of Right. Bloomsbury Publishing. p. 151. ISBN 978-1-4411-7413-0.
  26. ^ a b c d e John F. Lucas (1990). Introduction to Abstract Mathematics. Rowman & Littlefield. p. 108. ISBN 978-0-912675-73-2.
  27. ^ Weisstein, Eric W. «Set». mathworld.wolfram.com. Retrieved 2020-08-19.
  28. ^ Ralph C. Steinlage (1987). College Algebra. West Publishing Company. ISBN 978-0-314-29531-6.
  29. ^ a b Marek Capinski; Peter E. Kopp (2004). Measure, Integral and Probability. Springer Science & Business Media. p. 2. ISBN 978-1-85233-781-0.
  30. ^ «Set Symbols». www.mathsisfun.com. Retrieved 2020-08-19.
  31. ^ a b Halmos 1960, p. 8.
  32. ^ K.T. Leung; Doris Lai-chue Chen (1 July 1992). Elementary Set Theory, Part I/II. Hong Kong University Press. p. 27. ISBN 978-962-209-026-2.
  33. ^ Aggarwal, M.L. (2021). «1. Sets». Understanding ISC Mathematics Class XI. Vol. 1. Arya Publications (Avichal Publishing Company). p. A=3.
  34. ^ Sourendra Nath, De (January 2015). «Unit-1 Sets and Functions: 1. Set Theory». Chhaya Ganit (Ekadash Shreni). Scholar Books Pvt. Ltd. p. 5.
  35. ^ Halmos 1960, Sect.2.
  36. ^ a b Felix Hausdorff (2005). Set Theory. American Mathematical Soc. p. 30. ISBN 978-0-8218-3835-8.
  37. ^ Peter Comninos (6 April 2010). Mathematical and Computer Programming Techniques for Computer Graphics. Springer Science & Business Media. p. 7. ISBN 978-1-84628-292-8.
  38. ^ a b Halmos 1960, p. 3.
  39. ^ a b c d e f George Tourlakis (13 February 2003). Lectures in Logic and Set Theory: Volume 2, Set Theory. Cambridge University Press. p. 137. ISBN 978-1-139-43943-5.
  40. ^ Yiannis N. Moschovakis (1994). Notes on Set Theory. Springer Science & Business Media. ISBN 978-3-540-94180-4.
  41. ^ Arthur Charles Fleck (2001). Formal Models of Computation: The Ultimate Limits of Computing. World Scientific. p. 3. ISBN 978-981-02-4500-9.
  42. ^ William Johnston (25 September 2015). The Lebesgue Integral for Undergraduates. The Mathematical Association of America. p. 7. ISBN 978-1-939512-07-9.
  43. ^ Karl J. Smith (7 January 2008). Mathematics: Its Power and Utility. Cengage Learning. p. 401. ISBN 978-0-495-38913-2.
  44. ^ John Stillwell (16 October 2013). The Real Numbers: An Introduction to Set Theory and Analysis. Springer Science & Business Media. ISBN 978-3-319-01577-4.
  45. ^ David Tall (11 April 2006). Advanced Mathematical Thinking. Springer Science & Business Media. p. 211. ISBN 978-0-306-47203-9.
  46. ^ Cantor, Georg (1878). «Ein Beitrag zur Mannigfaltigkeitslehre». Journal für die Reine und Angewandte Mathematik. 1878 (84): 242–258. doi:10.1515/crll.1878.84.242.
  47. ^
    Cohen, Paul J. (December 15, 1963). «The Independence of the Continuum Hypothesis». Proceedings of the National Academy of Sciences of the United States of America. 50 (6): 1143–1148. Bibcode:1963PNAS…50.1143C. doi:10.1073/pnas.50.6.1143. JSTOR 71858. PMC 221287. PMID 16578557.
  48. ^ Halmos 1960, p. 19.
  49. ^ Halmos 1960, p. 20.
  50. ^ Edward B. Burger; Michael Starbird (18 August 2004). The Heart of Mathematics: An invitation to effective thinking. Springer Science & Business Media. p. 183. ISBN 978-1-931914-41-3.
  51. ^ Toufik Mansour (27 July 2012). Combinatorics of Set Partitions. CRC Press. ISBN 978-1-4398-6333-6.
  52. ^ Halmos 1960, p. 28.

References[edit]

  • Dauben, Joseph W. (1979). Georg Cantor: His Mathematics and Philosophy of the Infinite. Boston: Harvard University Press. ISBN 0-691-02447-2.
  • Halmos, Paul R. (1960). Naive Set Theory. Princeton, N.J.: Van Nostrand. ISBN 0-387-90092-6.
  • Stoll, Robert R. (1979). Set Theory and Logic. Mineola, N.Y.: Dover Publications. ISBN 0-486-63829-4.
  • Velleman, Daniel (2006). How To Prove It: A Structured Approach. Cambridge University Press. ISBN 0-521-67599-5.

External links[edit]

  • The dictionary definition of set at Wiktionary
  • Cantor’s «Beiträge zur Begründung der transfiniten Mengenlehre» (in German)

Содержание:

Множества

Понятие множества является одним из исходных понятий математики в том смысле, что его нельзя определить с помощью более простых, чем оно само, понятий. В повседневной жизни часто приходится рассматривать набор некоторых объектов как единое целое. Скажем, когда биолог изучает флору и фауну некоторой местности, он делит организмы на виды, а виды на семейства. При этом каждый вид рассматривается как единое целое, состоящее из организмов.

Множество может состоять из объектов различной природы. Например, вес реки Азии или все слова в словаре могут рассматриваться как множества.

Знаменитый немецкий математик Г. Кантор (1845 -1918) дал следующую описательную формулировку: «Множество есть совокупность, мыслимая как единое целое».

Объекты, составляющие множество, называются его элементами.

Обычно, для удобства, множество обозначается заглавными буквами латинского алфавита, например, А, В, С,…, а его элементы — прописными.

Множество А, состоящее из элементов а, b, с, … , будем записывать в виде A = {а, b, с,…}. Отметим, что записи {6, 11} , {11, 6} , {11, 6, 6, 11} означают одно и то же множество.

При ведем примеры множеств. Например, множество {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} — множество цифр десятичной системы счисления ,Множества - определение и вычисление с примерами решения

То, что х является элементом множества А, будем обозначать как Множества - определение и вычисление с примерами решенияа то, что он не является его элементом, будем обозначать как Множества - определение и вычисление с примерами решения Эти записи в первом случае читаются как «элементах принадлежит А», а во втором случае как «элемент х не принадлежит А».

Например, для множества Множества - определение и вычисление с примерами решения имеем Множества - определение и вычисление с примерами решенияоднако Множества - определение и вычисление с примерами решения

Если число элементов, составляющих множество, конечно, то такое множество будем называть конечным, в противном случае бесконечным. Например, множество Множества - определение и вычисление с примерами решения конечно, а множество Множества - определение и вычисление с примерами решения всех натуральных чисел бесконечно.

В качестве еще одного примера бесконечного множества можно привести множество всех натуральных чисел, не меньших 13.

Обозначим через Множества - определение и вычисление с примерами решения число всех элементов конечного множества А. Если, например,Множества - определение и вычисление с примерами решения

в силу того, что число всех его элементов равно 6. Множество, не содержащее ни одного элемента, называется пустым и обозначается так: 0

Пустое множество 0 считается конечным и для него я(0)= 0.

Для бесконечного множества А принято, что Множества - определение и вычисление с примерами решения

Если вес элементы множества А также принадлежат множеству В, то говорят, что множество А — подмножество множества В и обозначают так: Множества - определение и вычисление с примерами решения. В этом случае также говорят, что «множество А лежит во множестве В» или «множество А — часть В».

Во множестве {а} лежат два подмножества:Множества - определение и вычисление с примерами решения

Множество {а, b} имеет четыре подмножества: Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения так как все элементы первого множества также являются элементами второго.

Если множество А имеет элементы, не принадлежащие В, то множество А не может быть подмножеством В. Этот факт мы будем записывать так:Множества - определение и вычисление с примерами решения

Например, пусть А={ 1, 2, 3, 4}, В={2, 3, 4, 5}. Так как Множества - определение и вычисление с примерами решения Очевидно, что справедливы соотношения:Множества - определение и вычисление с примерами решения

Если Множества - определение и вычисление с примерами решения то эти множества состоят из одних и тех же элементов. Такие множества называются равными (совпадающими), и этот факт мы будем записывать так: А = В.

Например, множество всех правильных треугольников совпадает со множеством всевозможных треугольников, у которых все углы равны. Причина этого заключается в том, что у любого правильного треугольника

все углы равны, и, наоборот, если у треугольника все углы равны, то он является правильным.

Напомним основные числовые множества:Множества - определение и вычисление с примерами решения— множество натуральных чисел; Множества - определение и вычисление с примерами решения — множество целых чисел; Множества - определение и вычисление с примерами решения— множество рациональных чисел; Множества - определение и вычисление с примерами решения

Множество действительных чисел

Объединение и пересечение множеств

1) Множество, состоящее из элементов, принадлежащих хотя бы одному из множеств А, В, называется объединением множеств.

Объединение множеств А, В обозначается через Множества - определение и вычисление с примерами решения

Например, если Множества - определение и вычисление с примерами решения

2) Множество, состоящее из элементов, принадлежащих обоим множествам А, В, называется пересечением множеств. Пересечение множеств А. В обозначается через Множества - определение и вычисление с примерами решения

Например, если Множества - определение и вычисление с примерами решения

Множества, не имеющие общих элементов, называются не пересекающимися.

Пример:

Для множеств Множества - определение и вычисление с примерами решения

a) определите, какие из утверждений верны, а какие неверны: Множества - определение и вычисление с примерами решения

b) найдите множества: Множества - определение и вычисление с примерами решения

c) определите, какие из утверждений верны, а какие неверны:Множества - определение и вычисление с примерами решения

Решение:

а) Так как число 4 не является элементом множества М, то утверждение Множества - определение и вычисление с примерами решения неверно. Так как число 6 не является элементом множества, утверждение Множества - определение и вычисление с примерами решения истинно.

b). Множества - определение и вычисление с примерами решения так как только числа 3 и 9 — элементы обоих множеств. Для того, чтобы найти множествоМножества - определение и вычисление с примерами решениявыпишем элементы, принадлежащие либо М либо N: Множества - определение и вычисление с примерами решения = {2, 3, 4, 5, 6, 7, 8, 9, 10};

c) Утверждение Множества - определение и вычисление с примерами решения ложно, ибо существуют элементы множества М, не принадлежащие N. Утверждение Множества - определение и вычисление с примерами решения истинно, ибо в множестве У есть элементы из {9, 6, 3}. 

В некоторых случаях для задания множества указывается характеристическое свойство, истинное для всех элементов множества и ложное для остальных. Если мы кратко запишем тот факт, что элемент х удовлетворяет свойству Р как Р(х), то множество всех элементов, удовлетворяющих свойству Р обозначается так: Множества - определение и вычисление с примерами решения

Например, запись Множества - определение и вычисление с примерами решения читается следующим образом: «множество всех целых чисел, больших или равных -2, по меньших или равных 4».

На числовом луче это множество изображается так:

Множества - определение и вычисление с примерами решения

Видно, что Множества - определение и вычисление с примерами решения и оно, конечно, при этом Множества - определение и вычисление с примерами решения

Аналогично запись Множества - определение и вычисление с примерами решения читается так: «множество всех действительных чисел, больших или равных -2, но меньших 4».

На числовом луче это множество изображается так:

Множества - определение и вычисление с примерами решения

Видно, что, Множества - определение и вычисление с примерами решения и оно бесконечно, при этом Множества - определение и вычисление с примерами решения

Пример:

Множества - определение и вычисление с примерами решения

a) Как читается эта запись?

b) Выпишите последовательно элементы этого множества.

c) Найдите Множества - определение и вычисление с примерами решения

Решение:

a) «Множество всех целых чисел, больших 3 и меньших или равных 10»;

b). Множества - определение и вычисление с примерами решения

c). Множества - определение и вычисление с примерами решения

Рассмотрим множество всех натуральных чисел, больших или равных 1, но меньших или равных 8. Пусть нас интересуют только его подмножества.

В таком случае, обычно вводится множество Множества - определение и вычисление с примерами решения называемое универсальным множеством.

Множество А содержащее все элементы универсального множества U, не являющиеся элементами множества А, называется дополнением множества А.

Например, если Множества - определение и вычисление с примерами решения — универсальное множество, то дополнение множества Множества - определение и вычисление с примерами решенияимеет вид Множества - определение и вычисление с примерами решения

Очевидно, что Множества - определение и вычисление с примерами решения

т.е. множества А и А’ не имеют общих элементов, а также вес составляющие их элементы образуют в совокупности универсальное множество U.

Пример:

Пусть U универсальное множество. Найдите С’, если:

а) С = {все четные числа); b). Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

Пример:

Пусть Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения Выпишите все элементы множеств:

Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

Пример:

Пусть Множества - определение и вычисление с примерами решения {числа, кратные 4 и меньшие 50} и Q = {числа, кратные 6 и меньшие 50}. a) выпишите элементы множеств Р, Q;

b) найдите Множества - определение и вычисление с примерами решения с) Найдите Множества - определение и вычисление с примерами решения

d) проверьте выполнение равенства Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Значит, Множества - определение и вычисление с примерами решения равенство является верным. 

Диаграммы Венна

Множества - определение и вычисление с примерами решения

Например, на этом рисунке изображено множество А, лежащее внутри универсального множества Множества - определение и вычисление с примерами решенияЗакрашенная область вне круга означает дополнение А ’ множества А:

Множества - определение и вычисление с примерами решения

Если Множества - определение и вычисление с примерами решенияи Множества - определение и вычисление с примерами решения, то они изображаются на диаграмме Венна следующим образом:

Множества - определение и вычисление с примерами решения

Мы знаем, что если Множества - определение и вычисление с примерами решения то любой элемент множества В принадлежит множеству А. Значит, на соответствующей диаграмме Венна круг, обозначающий множество В, лежит в круге, обозначающем множество А:

Множества - определение и вычисление с примерами решения

Все элементы пересечения Множества - определение и вычисление с примерами решениялежат как в А, так и в В. Значит, на соответствующей диаграмме Венна закрашенная область изображает множество Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Все элементы объединения A U В принадлежат либо А, либо В, либо обоим одновременно. Значит, на соответствующей диаграмме Венна область, соответствующая множеству A U В, изображается следующим образом: Множества - определение и вычисление с примерами решения

Пример:

Пусть Множества - определение и вычисление с примерами решения Изобразите на диаграмме

Венна множества:

Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Удобно на диаграмме Венна множества раскрашивать.

Например, на рисунке раскрашены множества А, Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Высказывание

Высказывание — это повествовательное предложение, утверждающее что-либо о чем-либо, при этом непременно истинное или ложное. Вопросительные предложения, повествовательные предложения, описывающие личное отношение субъекта, например «Зеленый цвет приятен», не являются высказываниями. Отметим, что существуют высказывания, истинность или ложность которых не определяются однозначно.

Например, высказывание «Этот писатель родился в Ташкенте» может быть истинным по отношению к некоторым писателям и ложным по отношению к другим.

Пример:

Укажите, какие из предложений являются высказываниями. В случае, когда предложение является высказыванием, однозначно ли определяется его истинность — ложность?

а) 20:4=80; b) 25-8=200;

с) Где мой карандаш? d) У тебя глаза голубые.

Решение:

a) Это высказывание и оно ложно, так как 20:4=5;

b) это высказывание и оно истинно;

c) это вопросительное предложение и поэтому оно не является высказыванием;

d) это высказывание. Истинность-ложность его определяется неоднозначно, так как применительно к некоторым людям оно истинно, а к другим — ложно.

Мы будем обозначать высказывания буквами p,q,r … .

Например, р: во вторник прошел дождь; q: 20:4=5; r: х — четное число. Для построения нескольких сложных высказываний служат символы, называемые логическими связками: Множества - определение и вычисление с примерами решения(конъюнкция, «и», «но»), Множества - определение и вычисление с примерами решения(дизъюнкция, «или»), Множества - определение и вычисление с примерами решения(отрицание,» не ….»,»неверно, что ….»).

Рассмотрим их подробней.

Отрицание

Для высказывания р высказывание вида «не р» или «неверно, что р» называется отрицанием высказывания р и обозначается как Множества - определение и вычисление с примерами решения

Например,

отрицанием высказывания

р: Во вторник шел дождь

является высказывание

Множества - определение и вычисление с примерами решения: Во вторник дождя не было;

Отрицанием высказывания

р: У Мадины глаза голубые

является высказывание

Множества - определение и вычисление с примерами решения: У Мадины глаза не голубые.

Ясно, что если р истинно, то Множества - определение и вычисление с примерами решения ложно, и наоборот, если р ложно, то Множества - определение и вычисление с примерами решенияистинно. Этот факт иллюстрируется так называемой таблицей истинности. Такая таблица позволяет, исходя из высказывания р, заключить об истинности Множества - определение и вычисление с примерами решения или ложности Множества - определение и вычисление с примерами решения нового высказывания Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

1 Буквы Т и F — начальные буквы английских слов «true» (истинно) и «false» (ложно) соответственно.

Пример:

Составьте отрицание высказывания:

Множества - определение и вычисление с примерами решения

Решение:

Удобно находить отрицание высказывания с помощью диаграмм Венна. Например, рассмотрим высказывание: Множества - определение и вычисление с примерами решения

р: «Число х больше, чем 10 «.

На диаграмме U — множество всех чисел, множество Р — множество истинности высказывания р, то есть множество всех х , для которых это высказывание истинно. Множество Р’ является множеством истинности отрицания Множества - определение и вычисление с примерами решения: «Число х меньше или равно 10».

Пример:

На множестве Множества - определение и вычисление с примерами решениярассмотрим высказывание р: х- простое число. Найдите множества истинности высказываний Множества - определение и вычисление с примерами решения

Решение:

Пусть множество Р — множество истинности высказывания р, а множество Р’ — множество высказывания Множества - определение и вычисление с примерами решения. Тогда эти множества изображаются на диаграмме Венна следующим образом:

Множества - определение и вычисление с примерами решения

Конъюнкция

Высказывание, образованное из двух высказываний с помощью связки «и», называется конъюнкцией заданных высказываний.

Конъюнкция высказываний р, q обозначается через Множества - определение и вычисление с примерами решения

Например, конъюнкция высказываний,

р: Эльдар на завтрак ел плов;

q: Эльдар на завтрак ел самсу.

имеет вид:

Множества - определение и вычисление с примерами решения Эльдар на завтрак ел плов и самсу.

Видно, что высказывание Множества - определение и вычисление с примерами решения верно, если Эльдар на завтрак ел и плов и самсу, то есть высказывание Множества - определение и вычисление с примерами решения истинно при истинности обоих высказываний. Если хотя бы одно из высказываний р, q ложно, то высказывание Множества - определение и вычисление с примерами решения является ложным. Конъюнкция высказываний р, q имеет следующую таблицу истинности:

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения истинно, когда оба высказывания р, q истинны. Множества - определение и вычисление с примерами решения ложно, когда хотя бы одно из высказываний р, q ложно.

Первый и второй столбцы таблицы составлены из всех возможных значений истинности высказываний р, q.

На диаграмме Р — множество истинности высказывания р, Q — множество истинности высказывания q , а множество истинности высказывания Множества - определение и вычисление с примерами решения является множеством Множества - определение и вычисление с примерами решения на котором истинны оба высказывания:

Множества - определение и вычисление с примерами решения

Дизъюнкция

Высказывание, образованное из двух высказываний с помощью связки «или», называется дизъюнкцией заданных высказываний.

Дизъюнкция высказываний р, q обозначается через Множества - определение и вычисление с примерами решения

Например, дизъюнкция высказываний,

р: Эльдар сегодня посетит библиотеку,

q: Эльдар сегодня посетит театр .

имеет вид:

Множества - определение и вычисление с примерами решения Эльдар сегодня посетит библиотеку или театр.

ВысказываниеМножества - определение и вычисление с примерами решения истинно, когда сегодня Эльдар посетит либо библиотеку, либо театр, либо и то и другое.

Высказывание Множества - определение и вычисление с примерами решения будет ложным, лишь когда оба высказывания р, q будут ложными одновременно.

Дизъюнкция имеет следующую таблицу истинности:

Множества - определение и вычисление с примерами решения

pVq истинно, когда хотя бы одно из высказываний р, q истинно.

pVq ложно, когда оба высказывания p, q ложны.

На диаграмме Р — множество истинности высказывания р, Q — множество истинности высказывания q, а множество истинности высказывания pVq является множество Множества - определение и вычисление с примерами решения, на котором истинно хотя бы одно высказывание:

Множества - определение и вычисление с примерами решения

Логическая равносильность

Составим, используя буквы и символы логических связок таких, как отрицание, конъюнкция и дизъюнкция, символическую запись более сложных высказываний естественного языка, при этом не обращая внимания на их истинность или ложность.

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Объединяя таблицы истинности для отрицания, конъюнкции и дизъюнкции, можно составить таблицы истинности для более сложных высказываний: Множества - определение и вычисление с примерами решения

Пример 1. Составьте таблицу истинности высказывания Множества - определение и вычисление с примерами решения

1 шаг.

Выпишем таблицу и заполним сначала первый и второй столбец всеми возможными значениями истинности р и q:

Множества - определение и вычисление с примерами решения

2 шаг. Учитывая значения истинности q, заполним третий столбец значениями истинности Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

3 шаг Учитывая значения истинности p и Множества - определение и вычисление с примерами решениязаполним четвертый столбец значениями истинности Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Высказывание, являющееся истинным всегда, называется законом логики или тавтологией.

То, что высказывание является законом логики, можно доказать при помощи таблицы истинности.

Пример:

Докажите, что высказываниеМножества - определение и вычисление с примерами решенияявляется тавтологией.

Заполним таблицу истинности:

Множества - определение и вычисление с примерами решения

Решение:

Видно, что высказывание Множества - определение и вычисление с примерами решения принимает только истинные значения (см. третий столбец). Поэтому данное высказывание является тавтологией. 

Если для двух высказываний соответствующие их значениям истинности столбцы одинаковы, то эти высказывания называются логически равносильными.

Пример:

Докажите, что следующие высказывания являются логически равносильнымиМножества - определение и вычисление с примерами решения

Решение:

Составим таблицы истинности для высказываний Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Так как у высказыванийМножества - определение и вычисление с примерами решения соответствующие значениям истинности столбцы одинаковы, то эти высказывания являются логически равносильными.

Мы будем обозначать этот факт так:Множества - определение и вычисление с примерами решения

Импликация

Высказывание, образуемое из двух высказываний с помощью связки «если …., то …» называется импликацией этих двух высказываний.

Импликация «Если р, то q» обозначается какМножества - определение и вычисление с примерами решения и имеет также следующие интерпретации «Из р следует (вытекает) q», «Высказывание р достаточно для q «, «Высказывание q необходимо для р».

При этом высказывание р называется достаточным условием для q, а высказывание q — необходимым условием для р.

высказывание q — необходимым условием для р.

Рассмотрим , например, высказывания

р: У Сардора есть телевизор; q: Сардор будет смотреть кино.

Тогда высказывание Множества - определение и вычисление с примерами решения означает:

Если у Сардора есть телевизор, то он будет смотреть кино.

Точно такжеМножества - определение и вычисление с примерами решения

Для того, чтобы Сардор смотрел кино достаточно, чтобы у него был телевизор.

Можно заметить, что высказывание Множества - определение и вычисление с примерами решения ложно, лишь когда высказывание р истинно, а высказывание q ложно, а в остальных случаях — истинно. Поэтому имеем следующую таблицу истинности:

Множества - определение и вычисление с примерами решения Из высказываний и логических связок, не обращая на значения истинности, можно составить более сложные высказывания.

Пример:

Рассмотрим высказывания

р: «Анора часто смотрит кинофильмы»;

q: «Барно часто смотрит кинофильмы

r: «Барно не сдаст экзамен»;

s: «произойдет чудо».

 Имеем: 1. Множества - определение и вычисление с примерами решения«Анора часто смотрит кинофильмы, а Барно — нет».

2. Множества - определение и вычисление с примерами решения«Если Анора часто смотрит кинофильмы, то Барно нет».

3. Множества - определение и вычисление с примерами решения «Если Барно часто смотрит кинофильмы, то она или не сдаст экзамен или произойдет чудо».

4. Множества - определение и вычисление с примерами решения «Если Барно часто смотрит кинофильмы и при этом не произойдет чуда, то Барно не сдаст экзамен».

5. Множества - определение и вычисление с примерами решения «Либо Барно часто смотрит кинофильмы и произойдет чудо, либо Барно не сдаст экзамен».

Эквиваленция

Высказывание вида Множества - определение и вычисление с примерами решения называется эквиваленцией высказываний и обозначается так: Множества - определение и вычисление с примерами решения

Запись Множества - определение и вычисление с примерами решения читается как «высказывание р необходимо и достаточно для q» или как «высказывание р истинно лишь при выполнении q».

Пример:

р: х — четно, q: последняя цифра числа х четна. Выразите высказывание Множества - определение и вычисление с примерами решения

Решение:

Рассмотрим высказывание,Множества - определение и вычисление с примерами решения: Если х- четно, то его последняя цифра четна;

Множества - определение и вычисление с примерами решения Если последняя цифра числа х четна, то х — четно.

Тогда запись Множества - определение и вычисление с примерами решениячитается , как «Для того чтобы число х было четно, необходимо и достаточно, чтобы последняя его цифра была четной». ^ Теперь для заданных высказываний р и q составим таблицу истинности высказывания Множества - определение и вычисление с примерами решения:

Множества - определение и вычисление с примерами решения

Видно, что высказывание Множества - определение и вычисление с примерами решениябудет истинным, лишь когда высказывания р и q принимают одинаковые значения истинности (то есть когда они оба одновременно истинны или одновременно ложны ).

Множества - определение и вычисление с примерами решения

Конверсия

Конверсией высказывания Множества - определение и вычисление с примерами решения называется высказываниеМножества - определение и вычисление с примерами решения

Конверсия имеет следующую таблицу истинности:

Множества - определение и вычисление с примерами решения

Пример:

Рассмотрим высказывания

р: треугольник равнобедренный,

q: два угла треугольника равны.

Выразите на естественном языке высказывание Множества - определение и вычисление с примерами решения и его конверсию.

Решение:

Множества - определение и вычисление с примерами решенияЕсли треугольник равнобедренный, то у него два угла равны.

Множества - определение и вычисление с примерами решенияЕсли два угла треугольника равны, то он равнобедренный .

Инверсия

Инверсией высказыванияМножества - определение и вычисление с примерами решения называется высказывание Множества - определение и вычисление с примерами решения Инверсия имеет следующую таблицу истинности:

Эта таблица совпадает с таблицей истинности высказывания Множества - определение и вычисление с примерами решения. Поэтому конверсия и инверсия логически равносильны.

Множества - определение и вычисление с примерами решения

Контрапозиция

Контрапозицией высказывания Множества - определение и вычисление с примерами решенияназывается высказывание Множества - определение и вычисление с примерами решения Контрапозиция имеет следующую таблицу истинности:

Множества - определение и вычисление с примерами решения

Эта таблица совпадает с таблицей истинности высказывания Множества - определение и вычисление с примерами решенияПоэтому импликация и контрапозиция логически равносильны.

Пример:

Рассмотрим высказывание. Все учителя живут поблизости от школы». Составим его контрапозицию.

Решение:

Данное высказывание можно сформулировать так: «Если этот человек — учитель, что он живет поблизости от школы».

Это предложение имеет форму Множества - определение и вычисление с примерами решения, где

р: этот человек — учитель,

q: этот человек живет поблизости от школы.

Контрапозиция Множества - определение и вычисление с примерами решения имеет вид:

«Если этот человек не живет поблизости от школы, то он не является учителем.

Пример:

Рассмотрим высказывания:

р: Самандар находится в библиотеке, q: Самандар читает книгу.

Составьте имликацию, конверсию, инверсию и контрапозицию

Решение:

Множества - определение и вычисление с примерами решения

Отметим, что импликация и конверсия логически не равносильны, так как , например , Самандар может читать книгу и в классе.

Предикаты и кванторы

В некоторых предложениях участвуют переменные, при этом подставив вместо них конкретные значения, получим высказывания. Такие предложения называются предикатами.

Пример:

Пусть задан предикат Множества - определение и вычисление с примерами решения Определите истинность или ложность высказываний Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

В некоторых предикатах переменную можно определить исходя из контекста.

Например, в предложениях «Этот писатель родился в Ташкенте» и «Он родился в Ташкенте» переменными являются словосочетание». «Этот писатель» и местоимение «он» соответственно. Если вместо переменной подставить значение «Абдулла Кадыри», получим истинное высказывание «Абдулла Кадыри родился в Ташкенте». Если вместо переменной подставить значение «Шекспир», получим ложное высказывание «Шекспир родился в Ташкенте».

Обозначив переменную через х, вышеуказанные предложения можно записать в виде «х родился в Ташкенте».

В предикате могут участвовать одно или несколько переменных. В зависимости от количества переменных, участвующих в предикате, будем обозначать его так: Множества - определение и вычисление с примерами решения

Используя совместно с предикатом специальные символы Множества - определение и вычисление с примерами решения(квантор всеобщности, «для всех … «) и Множества - определение и вычисление с примерами решения (квантор существования, «существует такой, что ….»), можно образовать новые высказывания

Например, новое высказывание вида Множества - определение и вычисление с примерами решения говорит о том, что для всех значений х верно Р(х), высказывание вида Множества - определение и вычисление с примерами решения говорит о том, что значений х верно Р(х).

К примеру, рассмотрим предикат Р(х): «х родился в Самарканде». Тогда высказывание Множества - определение и вычисление с примерами решениячитается как «все родились в Самарканде», а высказывание Множества - определение и вычисление с примерами решения — «некоторые родились в Самарканде».

Приведем примеры, в которых можно определить истинность-ложность высказываний видаМножества - определение и вычисление с примерами решения

Пример:

ПустьМножества - определение и вычисление с примерами решения Докажите истинность высказывания: Множества - определение и вычисление с примерами решения

Решение:

 Проверим: Множества - определение и вычисление с примерами решения

Значит, высказывание, Множества - определение и вычисление с примерами решенияистинно.

Следует отметить, что для того, чтобы доказать ложность высказывания Множества - определение и вычисление с примерами решения достаточно, привести пример хотя бы одного значения х такого, что высказываниеМножества - определение и вычисление с примерами решения, ложно.

Действительно, приМножества - определение и вычисление с примерами решения

Любое значениех, которое показывает, что высказывание Множества - определение и вычисление с примерами решенияложно, называется контрпримером.

Пример:

Докажите истинность высказывания Множества - определение и вычисление с примерами решения

Решение:

Так как Множества - определение и вычисление с примерами решения то высказывание, Множества - определение и вычисление с примерами решенияистинно.

Если же Множества - определение и вычисление с примерами решения, то высказывание Множества - определение и вычисление с примерами решения ложно, ибо

Множества - определение и вычисление с примерами решения

Приведем два важных закона логики, связанных с операцией отрицания:Множества - определение и вычисление с примерами решения

Для понимания смысла этих законов приведем пример.

Если запись Множества - определение и вычисление с примерами решения означает Множества - определение и вычисление с примерами решения«Среди моих одноклассников

не существует отличников», тогда запись означает логически равносильное ему утверждение «Все мои одноклассники не являются отличниками».

Точно также, формула Множества - определение и вычисление с примерами решения означает высказывание «Неверно, что все мои одноклассники — отличники «, а формулаМножества - определение и вычисление с примерами решенияозначает логически равносильное ему высказывание «Некоторые мои одноклассники не являются отличниками».

Очевидно, что с помощью кванторов и предиката Множества - определение и вычисление с примерами решения можно построить зависящие от одной переменной предикаты вида:

Множества - определение и вычисление с примерами решения

из которых, в свою очередь, можно построить всказывания вида:

Множества - определение и вычисление с примерами решения

В то время, когда смысл высказываний Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решенияа также смысл высказыванийМножества - определение и вычисление с примерами решения,одинаков, оказывается, что высказывания Множества - определение и вычисление с примерами решенияне являются равносильными.

Рассмотрим, например, предикат Р(х,у): человек у — отец моего одноклассника х.

В этом случаеМножества - определение и вычисление с примерами решения = означает высказывание «у каждого моего одноклассника есть отец»; а Множества - определение и вычисление с примерами решенияозначает высказывание «существует такой человек, который является отцом всех моих одноклассников».

Аналогично можно показать, что высказывания,Множества - определение и вычисление с примерами решенияне являются равносильными (приведите примеры самостоятельно).

С помощью кванторов и предикатов можно построить и другие законы логики. Например, высказывание «Если все вороны черные, то ни одна не черная птица не является вороной «, служит примером закона логики вида:

Множества - определение и вычисление с примерами решения

Законы правильного мышления (аргументации)

В процессе познания действительности мы приобретаем новые знания. Некоторые из них непосредственно, в результате воздействия предметов внешнего мира на органы чувств. Но большую часть знаний мы получаем пу тем выведения новых знаний из знаний уже имеющихся. Чтобы научиться стройно и последовательно излагать свои мысли, правильно делать выводы, необходимо пользоваться законами логики. Определенность, непротиворечивость, последовательность и обоснованность являются обязательными качествами правильного мышления. Законы логики устанавливают необходимые связи в последовательном ряду мыслей и умозаключений.

Суждение представляет собой форму мышления, в которой что-либо утверждается или отрицается о предметах, их свойствах или отношениях. Например, в суждении «Железо-металл» утверждается связь между предметом (железо) и его признаком (являться металлом). В суждении «Яйцо появилось раньше курицы » утверждается связь между двумя предметами (яйцо и курица). Так как суждение выражается в форме повествовательного предложения, причем суждение может быть либо истинным, либо ложным, то каждое суждение имеет форму высказывания.

Умозаключение- это такая форма мышления, посредством которой из одного или нескольких суждений, называемых посылками, по определенным правилам получается некоторое суждение, называемое заключением или выводом.

Пусть S-совокупность исходных суждений (посылок), Р- заключение. В этом случае, умозаключение имеет логическую форму вида Множества - определение и вычисление с примерами решенияСовокупность высказываний S будем называть основанием, а высказывание Р- следствием. Основание и следствие будем связывать словом «следовательно» и отделять горизонтальной чертой: Множества - определение и вычисление с примерами решения . Рассмотрим простой пример.

Если Собир занимается спортом, то будет здоров. Собир занимается спортом. Следовательно, Собир будет здоров.

Найдем логическую форму этого умозаключения.

Пусть р: Собир занимается спортом; q: Собир будет здоров. Тогда умозаключение имеет вид:

Множества - определение и вычисление с примерами решения

Так следствие вытекает из суждений Множества - определение и вычисление с примерами решенияи р, то умозаключение имеет следующую логическую форму Множества - определение и вычисление с примерами решения

Составим соответствующую таблицу истинности: Множества - определение и вычисление с примерами решения

Получили тавтологию. Это показывает правильность умозаключения, то есть мы из данного основания получили правильное следствие.

Пример:

Покажите неправильность умозаключения:

Если треугольник имеет три стороны, то 2+4-7.

Следовательно, треугольник имеет три стороны.

Решение:

Найдем логическую форму этого умозаключения.

р: треугольник имеет три стороны.

q: 2+4=7

Имеем:

Множества - определение и вычисление с примерами решения

Так как здесь Множества - определение и вычисление с примерами решенияследует q, то наше умозаключение имеет логическую форму Множества - определение и вычисление с примерами решения

Составим соответствующую таблицу истинности:

Множества - определение и вычисление с примерами решения

В результате мы не получили тавтологию. Это показывает неверность умозаключения, то есть мы из данного основания не получили правильное следствие.

Ниже мы приведем некоторые правила правильных умозаключений:

Множества - определение и вычисление с примерами решения

Доказательство верности вышеуказанных умозаключений мы оставляем учащимся в качестве упражнения.

Софизмы и парадоксы

Множества - определение и вычисление с примерами решения— представляют собой преднамеренные, сознательно совершаемые ошибки, рассчитанные на то, чтобы выдать ложь за истину, тем самым вводя человека в заблуждение.

Одним из первых соответствующие примеры привел математик Зенон, живший в 5 веке до нашей эры в Древней Греции. Например, Зенон «доказал», что быстроногий Ахиллес никогда не догонит неторопливую черепаху, если в начале движения она находится впереди Ахиллеса. Приведем его рассуждения. Допустим, Ахиллес бежит в 10 раз быстрее, чем черепаха, и находи тся позади нее на расстоянии в 100 шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползет 10 шагов.

За то время, за которое Ахиллес пробежит 10 шагов, черепаха проползет еще 1 шаг, и так далее. Процесс будет длиться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Примеры Зенона связаны с понятиями бесконечности и движения, которые имели большое значение в развитии физики и математики.

Некоторые софизмы обсуждали в переписке между собой наши великие соотечественники Беруни и Ибн Сино, а также они встречаются в произведениях Фараби.

Приведем простейшие примеры на софизмы и обсудим их.

Пример:

Куда пропали 1000 руб? Три друга отобедали в кафе, после чего официант дал им счет на 25000 руб. Каждый из трех друзей достал по купюре в 10000 руб, в итоге они отдали официанту 30000 руб. На сдачу официант отдал 5000 руб более мелкими купюрами. Друзья взяли по 1000 руб себе, а оставшиеся 2000 руб отдали другу на такси. Один из друзей стал рассуждать: «Каждый из нас потратил по 9000 руб, что в итоге составляет 27000 руб. Затем 2000 руб отдали на такси, значит, в итоге получается 29000 руб. Куда пропали 1000 руб?»

Решение:

 Основной «подвох» в этом рассуждении заключается в том, что 2 От древнегреческого уловка.

расчеты сделаны неверно. Действительно, трое друзей сложились по 9000 руб и получили 27000 руб. Из этих денег 25000 руб заплатили за обед, а 2000 руб заплатили за такси. Следовательно, общая трата составила 27000 руб. Тс 2000 руб находятся внутри 27000 руб.

Пример:

Множества - определение и вычисление с примерами решенияУпростим верное равенство: 20-16-4=25-20-5

2(10—8—2)=25—20—5

2-2-(5—4—1)=5-(5—4—1)

Сократим левую и правую часть последнего равенства на общий делитель (5-4-1). В итоге получим равенство 2-2=5.

Основной «подвох» в этом рассуждении заключается в том, что мы поделили обе части равенства 2-2-(5-4-1)=5-(5-4-1) на нуль.

Множества - определение и вычисление с примерами решения — странное мнение, высказывание, расходящееся с общепринятыми мнениями, научными положениями, а также мнение, противоречащее здравому смыслу. Сам термин «парадокс» использовался в античной философии для обозначения всякого странного, оригинального мнения.

Парадоксы, обычно, возникают в теориях, логические основы которых не определены полно.

Пример:

Парадокс лжеца. Рассмотрим высказывание «То, что я утверждаю сейчас — ложь».

Если это высказывание истинно, значит, исходя из его содержания, верно то, что данное высказывание -ложь. Но если оно -ложь, тогда неверно то, что оно утверждает, то есть утверждение о ложности данного высказывания неверно, значит, данное высказывание истинно. Таким образом, цепочка рассуждений возвращается в начало.

Пример:

Прилагательное русского языка назовем рефлексивным, если оно обладает свойством, которое определяет.

Например, прилагательное «русский» — рефлексивное, а прилагательное «английский» — нерефлексивное, прилагательное «трехсложный» — рефлексивное (это слово состоит из трех слогов), а прилагательное «четырехсложный» — нерефлсксивное (состоит из пяти слогов). Вроде бы ничто не мешает нам определить множество {все рефлексивные прилагательные}. Но давайте рассмотрим прилагательное «нерефлексивный». Оно рефлексивное или нет?

Можно заявить, что прилагательное «нерефлексивный» не является ни рефлексивным, ни нерефлексивным. Действительно, если это слово рефлексивное, то по своему смыслу, оно нерефлексивное. Если же это от древнегреческого Множества - определение и вычисление с примерами решения — неожиданный, странный слово нерефлексивное, то, в силу того, что оно обладает свойством, которое определяет, оно является рефлексивным. Противоречие.

Пример:

Два взаимно пересекающихся множества А, В делят универсальное множество на четыре части:

Множества - определение и вычисление с примерами решения

Следовательно, число элементов универсального множества является суммой количеств элементов этих частей.

На следующей диаграмме мы заключили известные количества элементов частей универсального множества в круглые скобки: Множества - определение и вычисление с примерами решения

Здесь, например, обоим множествам А, В принадлежат 4 элемента, а 3 элемента не принадлежат ни одному из них.

Так как произвольный элемент множества U, принадлежит только одному из этих 4 частей , то число элементов множества U равно 7+4+6+3=20.

Пример:

Используя рисунок, найдите число элементов следующих множеств: Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

d). Множество элементов, принадлежащих Р, но не принадлежащих Q

е) Множество элементов, принадлежащих Q, но не принадлежащих Р;

f) Множество элементов, не принадлежащих ни Р, ни Q.

Множества - определение и вычисление с примерами решения

Пример:

Если Множества - определение и вычисление с примерами решения

a) Найдите Множества - определение и вычисление с примерами решения

b) Сколько элементов содержит множество элементов, принадлежащих А, но не принадлежащих В‘?

Решение:

Составим диаграмму Венна:

Из того, что Множества - определение и вычисление с примерами решенияСледовательно, b=6, а=8, с= 11, d=5.

Множества - определение и вычисление с примерами решения

Из диаграммы получаем следующее:

Множества - определение и вычисление с примерами решения

b) Число элементов, принадлежащих А, но не принадлежащих В, равно а= 8

Пример:

Из 27 учеников, посещающих спортивную секцию, 19 имеют темные волосы, 14 — черные глаза, а 11 имеют и темные волосы и черные глаза одновременно.

a) Изобразите эту информацию с помощью диаграммы Венна. Объясните ситуацию.

b) Найдите число учеников, которые I имеют или темные волосы или черные глаза; II темноволосых, но не черноглазых?

Решение:

а) Пусть Qs — множество темноволосых, a Qk множество черноглазых учеников.

Изобразим ситуацию на диаграмме:

Множества - определение и вычисление с примерами решения

b) Используя диаграмму, определим следующее:

I количество учеников, имеющих или темные волосы или черные глаза:

Множества - определение и вычисление с примерами решения

II количество темноволосых учеников, не обладающих черными глазами:

Множества - определение и вычисление с примерами решения

Пример:

На футбольном соревновании город представляют три команды А, В и С. 20 процентов населения города болеют за команду И, 24 процента — за В, 28 процентов — за С. 4 процента жителей болеют и за С и за И, 5 процент, жителей болеют и за В и за А, а 6 процентов жителей болеют и за В и за С. Кроме того, 1 процент населения болеет за все три команды.

Сколько процентов жителей:

a) болеют только за команду А;

b) болеют и за А и за В, но не болеют за команду С;

c) не болеют ни за одну из команд?

Решение:

Заполним для начала соответствующую диаграмму Венна.

Множества - определение и вычисление с примерами решения

а= 1, так как 1 процент жителей болеет за все команды.

a+d=4, так как 4 процента жителей болеет и за И и за В.

а+b=6, так как 6 процентов жителей болеют и за В и за С а+с=5, так как 5 процентов жителей болеют

—-

Множества

Понятие множества принадлежит к числу первичных, не определяемых через более простые. Под множеством понимается совокупность некоторых объектов, объединенных по определенному признаку. Объекты, которые образуют множество, называются элементами, или точками, этого множества.

Множества обозначаются прописными буквами, а их элементы — строчными. Если Множества - определение и вычисление с примерами решения есть элемент множества А, то используется запись Множества - определение и вычисление с примерами решения если b не является элементом множества А, то записывают Множества - определение и вычисление с примерами решения

Например, Множества - определение и вычисление с примерами решения — множество А состоит из элементов 1;3;6;8.

Множество, не содержащее ни одного элемента, называется пустым и обозначается Множества - определение и вычисление с примерами решения Например, множество действительных корней уравнения Множества - определение и вычисление с примерами решения есть пустое множество.

Два множества называются равными, если они состоят из одних и тех же элементов. Например, если Множества - определение и вычисление с примерами решения т.е.
множества равны.

Объединением двух множеств А и В называется множество С, состоящее из элементов, принадлежащих хотя бы одному из данных множеств, т.е. Множества - определение и вычисление с примерами решения

Пересечением двух множеств А и В называется множество D, состоящее из всех элементов, одновременно принадлежащих каждому из данных множеств А и В, т.е. Множества - определение и вычисление с примерами решения

Разностью двух множеств А и В называется множество E, состоящее из всех элементов множества А, которые не принадлежат множеству В, т.е. Множества - определение и вычисление с примерами решения

Пример 1. Даны множества  Множества - определение и вычисление с примерами решения Найти объединение, пересечение и разность множеств А и В.

Решение. Объединение двух данных множеств — Множества - определение и вычисление с примерами решения их пересечение — Множества - определение и вычисление с примерами решения а разностью — Множества - определение и вычисление с примерами решения  .

Множества, элементами которых являются действительные числа, называются числовыми.

Обозначения множеств:

Множества - определение и вычисление с примерами решения — множество натуральных чисел.

Множества - определение и вычисление с примерами решения — множество целых чисел;
Множества - определение и вычисление с примерами решения— множество рациональных чисел;

R — множество действительных чисел;

I — множество иррациональных чисел;

Множества - определение и вычисление с примерами решения — множество комплексных чисел.

Геометрически, каждому действительному числу соответствует точка числовой оси, и наоборот, каждой точке прямой — определенное действительное число.

Множество X, элементы  которого удовлетворяют: неравенству Множества - определение и вычисление с примерами решенияназывается отрезком Множества - определение и вычисление с примерами решения неравенству Множества - определение и вычисление с примерами решения называется интервалом Множества - определение и вычисление с примерами решениянеравенствам Множества - определение и вычисление с примерами решения называются полуинтервалом соответственно Множества - определение и вычисление с примерами решения

В дальнейшем все указанные множества мы объединяем термином промежуток X.

——

Множества и операции над ними

Под множеством будем понимать совокупность объектов, наделенных определенными свойствами. Эти свойства должны полностью определять данное множество, то есть являться признаками, по которым относительно любого объекта можно решить, принадлежит он данному множеству или нет. Синонимами термина «множество» являются термины «класс «семейство «совокупность». Объекты, из которых состоит данное множество, называют его элементами.

Чаще всего множество обозначают большими буквами латинского или греческого алфавита, а его элементы — малыми буквами. Если a — элемент множества A, то пишут a ∈ A (читают: «a принадлежит множеству A») или A 3 a (множество A содержит элемент a). Запись a ∈/ A означает, что a не является элементом множества A.
Множество обычно записывают одним из следующих способов:

A = {a , . . . , Множества - определение и вычисление с примерами решения} или A = {x ∈ X : P (x)}.

Первая запись означает, что множество A состоит из элементов a, . . . , Множества - определение и вычисление с примерами решения , то есть перечислены элементы, составляющие A, их может быть конечное число или бесконечно много. Вторая запись означает, что A есть совокупность всех тех объектов из множества X, для которых выполняется свойство P . Формально введем пустое множество — множество, не содержащее в себе никаких элементов, которое обозначим символом Множества - определение и вычисление с примерами решения.

Определение 1.1. Множества A и B называются равными (или совпадающими), если они состоят из одних и тех же элементов, то есть x ∈ A тогда и только тогда, когда x ∈ B .

Коротко это высказывание записывают: A = B, а отрицание этого утверждения — в виде: Множества - определение и вычисление с примерами решения .

Определение 1.2. Если каждый элемент множества A является элементом множества B , то говорят, что A есть подмножество множества B (или A есть часть B ), и пишут A ⊂ B (читается: «Множество A содержится в множестве B») или B ⊃ A (читается: «Множестоо B содержит множество A»).

Отметим следующие свойства отношения включения:
1.    A ⊂ A, то есть всякое множество есть подмножество себя самого;
2.    Если A ⊂ B и B ⊂ C, то A ⊂ C (отношение включения транзитивно);
3.    Если A ⊂ B и B ⊂ A, то A = B.

Удобно считать, что Множества - определение и вычисление с примерами решения⊂ A для любого множества A.

Пусть A и B — некоторые подмножества множества E. Введем наиболее простые операции с множествами.

Определение 1.3. Объединением множеств A и B называется множество, обозначаемое A ∪ B и состоящее из всех элементов, которые принадлежат или множеству A или B .

Таким образом, x ∈ A ∪ B , если x ∈ A, но x Множества - определение и вычисление с примерами решения B , или x ∈ B , но x Множества - определение и вычисление с примерами решения A, или x ∈ A и x ∈ B. Очевидно, что A ∪ A = A, A ∪ Множества - определение и вычисление с примерами решения = A.

Определение 1.4. Пересечением множеств A и B называют множество, обозначаемое A∩B и состоящее из всех элементов, каждый из которых принадлежит и A и B .

Если множества A и B не имеют общих точек, то A ∩ B =Множества - определение и вычисление с примерами решения. Очевидно, что A∩A= A, A∩Множества - определение и вычисление с примерами решения= Множества - определение и вычисление с примерами решения.

Определение 1.5. Разностью множеств A и B называют множество, обозначаемое A B и состоящее из всех элементов множества A, которые не принадлежат множеству B .

Если A ⊂ B , то часто множество A B называют дополнением множества B до A. По определению A A = Множества - определение и вычисление с примерами решения, A Множества - определение и вычисление с примерами решения = A.

Пример 1.1. Пусть A = {1,3,4,8, 15} ,B = {1,2,7,8, 12}. Тогда

A∪B = {1,2,3,4,7,8,12,15}, A∩B = {1, 8},

AB = {3, 4, 15}, BA= {2, 7, 12}

Определение 1.6. Набор, состоящий из двух элементов x1 и x2, называют упорядоченным, если известно, какой из этих элементов является первым, а какой — вторым. Такой упорядоченный набор называют упорядоченной парой и обозначают (x1, x2). Элементы x1 , x2 называют, соответственно, первой и второй координатами пары (x1, x2). Пары (x1, x2) и (y1 , y2) называют совпадающими, если x1 = y1 и x2 = y2 .

Определение 1.7. Декартовым (или, по-другому, прямым) произведением множеств A и B называют множество упорядоченных пар (x, y), где первый элемент x является элементом множества A, а второй y — элементом множества B . Это множество обозначают символом A × B .

Таким образом, A × B = { (x, y) | x ∈ A, y ∈ B}. Но, вообще говоря, A × BМножества - определение и вычисление с примерами решения B × A. Известная всем плоскость с декартовой системой координат является декартовым произведением двух числовых прямых (осей).

Пусть A и B — числовые отрезки, помещенные на взаимно перпендикулярных осях плоскости. Упорядоченная пара (x, y) — это точка пересечения перпендикуляров, восстановленных в точках x ∈ A и y ∈ B . Произведением A × B является прямоугольник.

Логическая символика

В последующем, как и в большинстве математических текстов используется ряд специальных символов, многие из которых вводятся по мере надобности. Применяются распространенные символы математической логики Множества - определение и вычисление с примерами решения, Множества - определение и вычисление с примерами решения, ∃, ∀, которые читаются, соответственно, как «влечет» , «равносильно» , «существует» («найдется»), «любой» («каждый» , «для каждого» , «для любого» ).

Запись A Множества - определение и вычисление с примерами решения B читают одним из следующих способов: A влечет B , B следует из A, B — необходимое условие A, A — достаточное условие (признак) B.

Запись A Множества - определение и вычисление с примерами решения B читают одним из следующих способов: A равносильно B, A необходимо и достаточно для B , A верно тогда и только тогда, когда верно B . Квантор равносильности часто применяется в символьной записи определений и утверждений.

Запись «∃ x ∈ X » означает: существует элемент x из множества X .
Запись «∀ x ∈ X » означает: для любого элемента x из множества X или каков бы ни был элемент x из множества X .

Часто в символьной записи математических утверждений используют символ «:» или эквивалентный ему символ «| которые читают: «такой, что». В частности, запись «∃ x ∈ X : x2 — 1 = 0″ означает: существует такой элемент x в множестве X , что x2 — 1 = 0.

  • Заказать решение задач по высшей математике

Множества

Множества и операции над ними

Понятие множества и его элементов

Элемент Множества - определение и вычисление с примерами решения принадлежит множеству Множества - определение и вычисление с примерами решенияМножества - определение и вычисление с примерами решенияМножества - определение и вычисление с примерами решения

Элемент Множества - определение и вычисление с примерами решения не принадлежит множеству Множества - определение и вычисление с примерами решенияМножества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

В множестве нет элементов Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

Множество можно представить как совокупность некоторых объектов, объединенных по определенному признаку. В математике множество — одно из основных неопределяемых понятий.

Каждый объект, принадлежащий множеству Множества - определение и вычисление с примерами решения, называется элементом этого множества.

Множество, не содержащее ни одного элемента, называется пустым множеством и обозначается Множества - определение и вычисление с примерами решения

Подмножество Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Если каждый элемент множества Множества - определение и вычисление с примерами решения является элементом множества Множества - определение и вычисление с примерами решения, то говорят, что множество Множества - определение и вычисление с примерами решения является подмножеством множества Множества - определение и вычисление с примерами решения, и записывают так: Множества - определение и вычисление с примерами решения Используется также запись Множества - определение и вычисление с примерами решения, если множество Множества - определение и вычисление с примерами решения или является подмножеством множества Множества - определение и вычисление с примерами решения, или равно множеству Множества - определение и вычисление с примерами решения

Равенство множеств

Множества - определение и вычисление с примерами решения

Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества

Пересечение множеств Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Пересечением множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называют их общую часть, то есть множество Множества - определение и вычисление с примерами решения всех элементов, принадлежащих как множеству Множества - определение и вычисление с примерами решения, так и множеству Множества - определение и вычисление с примерами решения

Объединение множеств Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Объединением множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называют множество Множества - определение и вычисление с примерами решения, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств (Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения)

Разность множеств Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Разностью множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называется множество Множества - определение и вычисление с примерами решения, которое состоит из всех элементов, принадлежащих множеству Множества - определение и вычисление с примерами решения и не принадлежащих множеству Множества - определение и вычисление с примерами решения

Дополнение множеств

Множества - определение и вычисление с примерами решения

Если все рассматриваемые множества являются подмножествами некоторого универсального множества Множества - определение и вычисление с примерами решения, то разность Множества - определение и вычисление с примерами решения называется дополнением множества Множества - определение и вычисление с примерами решения. Другими словами, дополнением множества Множества - определение и вычисление с примерами решения называется множество, состоящее из всех элементов, не принадлежащих множеству Множества - определение и вычисление с примерами решения (но принадлежащих универсальному множеству Множества - определение и вычисление с примерами решения)

Объяснение и обоснование:

Понятие множества

Одним из основных понятий, которые используются в математике, является понятие множества. Для него не дается определения. Можно пояснить, что множеством называют произвольную совокупность объектов, а сами объекты — элементами данного множества. Так, можно говорить о множестве учеников в классе (элементы — ученики), множестве дней недели (элементы — дни недели), множестве натуральных делителей числа 6 (элементы — числа 1, 2, 3, 6) и т. д. В курсах алгебры и алгебры и начал анализа чаще всего рассматривают множества, элементами которых являются числа, и поэтому их называют числовыми множествами.

Как правило, множества обозначают прописными буквами латинского алфавита. Например, если множество Множества - определение и вычисление с примерами решения состоит из чисел 1; 2; 3, то его обозначают так: Множества - определение и вычисление с примерами решения = {1; 2; 3}. Тот факт, что число 2 входит в это множество (является элементом данного множества Множества - определение и вычисление с примерами решения), записывается с помощью специального значка е следующим образом: Множества - определение и вычисление с примерами решения; а то, что число 5 не входит в это множество (не является элементом данного множества), записывается так: Множества - определение и вычисление с примерами решения.

Можно рассматривать также множество, не содержащее ни одного элемента, — пустое множество.

Например, множество простых делителей числа 1 — пустое множество.

Для некоторых множеств существуют специальные обозначения. Так, пустое множество обозначается символом Множества - определение и вычисление с примерами решения, множество всех натуральных чисел — буквой Множества - определение и вычисление с примерами решения, множество всех целых чисел — буквой Множества - определение и вычисление с примерами решения, множество всех рациональных чисел — буквой Множества - определение и вычисление с примерами решения, а множество всех действительных чисел — буквой Множества - определение и вычисление с примерами решения. Множества бывают конечными и бесконечными в зависимости от того, какое количество элементов они содержат. Так, множества Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — конечные, потому что содержат конечное число элементов, а множества Множества - определение и вычисление с примерами решения — бесконечные.

Множества задают или с помощью перечисления их элементов (это можно сделать только для конечных множеств), или с помощью описания, когда задается правило — характеристическое свойство, которое позволяет определить, принадлежит или нет данный объект рассматриваемому множеству. Например, множество Множества - определение и вычисление с примерами решения задано перечислением элементов, а множество Множества - определение и вычисление с примерами решения четных целых чисел — характеристическим свойством элементов множества. Последнее множество иногда записывают так: Множества - определение и вычисление с примерами решения или так: Множества - определение и вычисление с примерами решения — здесь после вертикальной черточки записано характеристическое Множества - определение и вычисление с примерами решения.

В общем виде запись множества с помощью характеристического свойства можно обозначить так: Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения — характеристическое свойство. Например, Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решенияВ этом случае и в записи решений тригонометрических уравнений и неравенств в разделе 3 запись Множества - определение и вычисление с примерами решения означает, что Множества - определение и вычисление с примерами решения принимает любое целое значение, что также можно записать как Множества - определение и вычисление с примерами решения

Равенство множеств

Пусть Множества - определение и вычисление с примерами решения — множество цифр трехзначного числа 312, то есть Множества - определение и вычисление с примерами решения, а Множества - определение и вычисление с примерами решения — множество натуральных чисел, меньших чем 4, то есть Множества - определение и вычисление с примерами решения. Поскольку эти множества состоят из одних и тех же элементов, то они считаются равными. Это записывают так: Множества - определение и вычисление с примерами решения. Для бесконечных множеств таким способом (сравнивая все элементы) установить их равенство невозможно. Поэтому в общем случае равенство множеств определяется следующим образом.

Два множества называются равными, если каждый элемент первого множества является элементом второго множества и, наоборот, каждый элемент второго множества является элементом первого множества.

Из приведенного определения равенства множеств следует, что в множестве одинаковые элементы не различаются. Действительно, например, Множества - определение и вычисление с примерами решения, поскольку каждый элемент первого множества (1 или 2) является элементом второго множества и, наоборот, каждый элемент второго множества (1 или 2) является элементом первого. Поэтому, записывая множество, чаще всего каждый его элемент записывают только один раз.

Подмножество

Если каждый элемент множества Множества - определение и вычисление с примерами решения является элементом множества Множества - определение и вычисление с примерами решения, то говорят, что множество Множества - определение и вычисление с примерами решения является подмножеством множества Множества - определение и вычисление с примерами решения.

Это записывают следующим образом: Множества - определение и вычисление с примерами решения

Например, Множества - определение и вычисление с примерами решения (поскольку любое натуральное число — целое), Множества - определение и вычисление с примерами решения (поскольку любое целое число — рациональное), Множества - определение и вычисление с примерами решения (поскольку любое рациональное число — действительное).

Полагают, что всегда Множества - определение и вычисление с примерами решения, то есть пустое множество является подмножеством любого непустого множества.

Иногда вместо записи Множества - определение и вычисление с примерами решения используется также запись Множества - определение и вычисление с примерами решения, если множество Множества - определение и вычисление с примерами решения является подмножеством множества Множества - определение и вычисление с примерами решения, или равно множеству Множества - определение и вычисление с примерами решения. Например, Множества - определение и вычисление с примерами решения

Сопоставим определение равенства множеств с определением подмножества. Если множества Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения равны, то: 1) каждый элемент множества Множества - определение и вычисление с примерами решения является элементом множества Множества - определение и вычисление с примерами решения, следовательно, Множества - определение и вычисление с примерами решения — подмножество Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения; 2) каждый элемент множества Множества - определение и вычисление с примерами решения является элементом множества Множества - определение и вычисление с примерами решения, следовательно, Множества - определение и вычисление с примерами решения — подмножество Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения.

Таким образом, два множества равны, если каждое из них является подмножеством другого.

Иногда соотношения между множествами удобно иллюстрировать с помощью кругов (которые часто называют кругами Эйлера—Венна). Например, рисунок 1 иллюстрирует определение подмножества, а рисунок 2 — отношения между множествами Множества - определение и вычисление с примерами решения.

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Операции над множествами

Над множествами можно выполнять определенные действия: пересечение, объединение, находить разность. Дадим определение этих операций и проиллюстрируем их с помощью кругов Эйлера—Венна.

Пересечением множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называют их общую часть, то есть множество Множества - определение и вычисление с примерами решения всех элементов, принадлежащих как множеству Множества - определение и вычисление с примерами решения, так и множеству Множества - определение и вычисление с примерами решения.

Пересечение множеств обозначают знаком Множества - определение и вычисление с примерами решения (на рисунке 3 приведена иллюстрация определения пересечения множеств).

Например, если Множества - определение и вычисление с примерами решения то Множества - определение и вычисление с примерами решения.

Объединением множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называют множество Множества - определение и вычисление с примерами решения, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств (Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения).

Объединение множеств обозначают знаком Множества - определение и вычисление с примерами решения (на рисунке 4 приведена иллюстрация определения объединения множеств).

Например, для множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения из предыдущего примера Множества - определение и вычисление с примерами решения Если обозначить множество иррациональных чисел через Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения.

Разностью множеств Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения называется множество Множества - определение и вычисление с примерами решения, состоящее из всех элементов, которые принадлежат множеству Множества - определение и вычисление с примерами решения и не принадлежат множеству В.

Разность множеств обозначают знаком Множества - определение и вычисление с примерами решения. На рисунке 5 приведена иллюстрация определения разности множеств.

Например, если Множества - определение и вычисление с примерами решения

Если Множества - определение и вычисление с примерами решения — подмножество Множества - определение и вычисление с примерами решения, то разность Множества - определение и вычисление с примерами решения называют дополнением множества В до множества Множества - определение и вычисление с примерами решения (рис. 6).

Множества - определение и вычисление с примерами решения

Например, если обозначить множество всех иррациональных чисел через Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения: множество Множества - определение и вычисление с примерами решения всех иррациональных чисел дополняет множество Множества - определение и вычисление с примерами решения всех рациональных чисел до множества Множества - определение и вычисление с примерами решения всех действительных чисел.

Если все множества, которые мы рассматриваем, являются подмножествами некоторого так называемого универсального множества Множества - определение и вычисление с примерами решения (на рисунке его обычно изображают в виде прямоугольника, а все остальные множества — в виде кругов внутри этого прямоугольника, то разность Множества - определение и вычисление с примерами решения называют дополнением множества Множества - определение и вычисление с примерами решения (рис. 7). То есть дополнением множества Множества - определение и вычисление с примерами решения называется множество, состоящее из всех элементов, не принадлежащих множеству Множества - определение и вычисление с примерами решения, но принадлежащих универсальному множеству Множества - определение и вычисление с примерами решения.

Дополнение множества Множества - определение и вычисление с примерами решения обозначается Множества - определение и вычисление с примерами решения (можно читать: «Множества - определение и вычисление с примерами решения с чертой» или «дополнение Множества - определение и вычисление с примерами решения»).

Например, если Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения. Для этого примера удобно использовать традиционную иллюстрацию множества действительных чисел на числовой прямой (рис. 8).

Множества - определение и вычисление с примерами решения

Числовые множества. Множество действительных чисел

Числовые множества:

Действительные числа Множества - определение и вычисление с примерами решения

Числа, которые можно представить в виде бесконечной десятичной дроби

Рациональные числа Множества - определение и вычисление с примерами решения

Можно представить в виде несократимой дроби Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения — целое, — натуральное число. Записываются в виде бесконечной периодической десятичной дроби

Множества - определение и вычисление с примерами решения

Иррациональные числа

Нельзя представить в виде несократимой дроби Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения — целое, Множества - определение и вычисление с примерами решения — натуральное число. Записываются в виде бесконечной непериодической десятичной дроби

Множества - определение и вычисление с примерами решения

Целые числа Множества - определение и вычисление с примерами решения

Включают натуральные числа, числа, противоположные им, и число нуль

Дробные числа

Числа, состоящие из целого числа частей единицы

(Множества - определение и вычисление с примерами решения — обыкновенная дробь, 1,23 — десятичная дробь: Множества - определение и вычисление с примерами решения)

Натуральные числа Множества - определение и вычисление с примерами решения (целые положительные)

Для школьного курса математики натуральное число — основное не определяемое понятие

Число 0

Такое число, при сложение с которым любое число не изменяется

Множества - определение и вычисление с примерами решения

Целые отрицательные числа

Числа, противоположные натуральным

Модуль действительного числа и его свойства

Определение:

Модулем положительного числа называется само это число, модулем отрицательного числа называется число, противоположное ему, модуль нуля равен нулю

Множества - определение и вычисление с примерами решения

Геометрический смысл модуля

Множества - определение и вычисление с примерами решения

На координатной прямой модуль — это расстояние от начала координат до точки, изображающей это число.

Модуль разности двух чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — это расстояние между точками Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения на координатной прямой

Свойства

1. Множества - определение и вычисление с примерами решения Модуль любого числа — неотрицательное число

2. Множества - определение и вычисление с примерами решения Модули противоположных чисел равны

3. Множества - определение и вычисление с примерами решения, то естьМножества - определение и вычисление с примерами решения Каждое число не больше своего модуля

4. При Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

5. При Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

6. Множества - определение и вычисление с примерами решения Модуль произведения равен произведению модулей множителей

7. Множества - определение и вычисление с примерами решения Модуль дроби равен модулю числителя, деленному на модуль знаменателя (если знаменатель не равен нулю)

8. Множества - определение и вычисление с примерами решения Множества - определение и вычисление с примерами решения

9. Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Модуль суммы не превышает суммы модулей слагаемых

10. Множества - определение и вычисление с примерами решения

Объяснение и обоснование:

Числовые множества

В курсе математики вы встречались с разными числами: натуральными, целыми, рациональными, иррациональными, действительными. Представление о числах у человечества складывалось постепенно, под воздействием требований практики. Например, натуральные числа появились в связи с необходимостью подсчета предметов. Но для того чтобы дать ответ на вопрос «Сколько спичек в пустой коробке из-под спичек?», множества натуральных чисел Множества - определение и вычисление с примерами решения недостаточно — для этого необходимо иметь еще и число нуль. Присоединяя к множеству Множества - определение и вычисление с примерами решения натуральных чисел число 0, получаем множество неотрицательных целых чисел. Его часто обозначают Множества - определение и вычисление с примерами решения. Одних только неотрицательных целых чисел оказалось недостаточно для решения задач практики (а следовательно, и математических задач, отображающих заданную реальную ситуацию). Так, для того чтобы охарактеризовать температуру воздуха выше и ниже нуля или движение тела в противоположных направлениях, необходимы противоположные натуральным числа, то есть отрицательные числа. Для натурального числа Множества - определение и вычисление с примерами решения противоположным считается число Множества - определение и вычисление с примерами решения, а для числа Множества - определение и вычисление с примерами решения противоположным считается число Множества - определение и вычисление с примерами решения. Нуль считают противоположным самому себе.

Натуральные числа, числа, противоположные натуральным, и число нуль составляют множество Множества - определение и вычисление с примерами решения целых чисел.

Измерение величин привело к необходимости расширения множества целых чисел и введения рациональных чисел. Например, средняя многолетняя температура воздуха в январе в г. Харькове — Множества - определение и вычисление с примерами решения, длительность урока — 45 минут, или Множества - определение и вычисление с примерами решения часа.

Таким образом, выбирая какую-либо единицу измерения, мы получаем числовое значение величин, которое может выражаться с помощью разных рациональных чисел — целых и дробных, положительных и отрицательных.

Целые и дробные числа составляют множество Множества - определение и вычисление с примерами решения рациональных чисел.

Любое рациональное число можно записать в виде дроби Множества - определение и вычисление с примерами решения, где

Множества - определение и вычисление с примерами решения (то есть числитель Множества - определение и вычисление с примерами решения является целым числом, а знаменатель Множества - определение и вычисление с примерами решения — натуральным).

Рациональное число может быть записано разными дробями. Например,

Множества - определение и вычисление с примерами решения

Как видно из приведенных примеров, среди дробей, которые изображают данное рациональное число, всегда есть единственная несократимая дробь (для целых чисел — это дробь, знаменатель которой равен 1).

Обратим внимание, что рациональное число, записанное в виде дроби Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения, можно также записать в виде конечной или бесконечной периодической десятичной дроби, разделив числитель на знаменатель. Например, Множества - определение и вычисление с примерами решения.

Договоримся, что конечную десятичную дробь можно изображать в виде бесконечной, у которой после последнего десятичного знака, отличного от нуля, на месте следующих десятичных знаков записываются нули, например, Множества - определение и вычисление с примерами решения .

Целые числа также договоримся записывать в виде бесконечной десятичной дроби, у которой справа от запятой на месте десятичных знаков стоят нули, например Множества - определение и вычисление с примерами решения . Таким образом, любое рациональное число может быть записано как бесконечная периодическая дробь. Напомним, что у бесконечной периодической дроби, начиная с некоторого разряда, все десятичные знаки повторяются. Группу цифр, которая повторяется, называют периодом дроби; при записи дроби период записывают в скобках. Например, Множества - определение и вычисление с примерами решения.

Таким образом, каждое рациональное число может быть записано в виде бесконечной периодической десятичной дроби и наоборот, каждая бесконечная периодическая дробь задает рациональное число.

Обратим внимание, что любая периодическая десятичная дробь с периодом девять равна бесконечной десятичной дроби с периодом нуль, у которой десятичный разряд, предшествующий периоду, увеличен на единицу по сравнению с разрядом первой дроби. Например, бесконечные периодические дроби Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения являются записью одного и того же рационального числа Множества - определение и вычисление с примерами решения. Действительно, учитывая, что сумма бесконечной убывающей геометрической прогрессии с первым членом Множества - определение и вычисление с примерами решения и знаменателем Множества - определение и вычисление с примерами решениявычисляется по формуле Множества - определение и вычисление с примерами решения, имеем:

Множества - определение и вычисление с примерами решения

В дальнейшем, записывая рациональные числа с помощью бесконечных периодических десятичных дробей, договоримся исключить из рассмотрения бесконечные периодические дроби, период которых равен девяти.

Каждое рациональное число можно изобразить точкой на координатной прямой (то есть прямой, на которой выбраны начало отсчета, положительное направление и единица измерения). Например, на рисунке изображены несколько рациональных чисел Множества - определение и вычисление с примерами решения.

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Однако на координатной прямой есть точки, изображающие числа, которые не являются рациональными. Например, из курса алгебры известно, что число Множества - определение и вычисление с примерами решения не является рациональным. Это так называемое иррациональное число. Если построить квадрат со стороной, равной 1, на координатной прямой Множества - определение и вычисление с примерами решения (рис. 10), то его диагональ будет равна Множества - определение и вычисление с примерами решения. Тогда, проведя дугу окружности радиуса Множества - определение и вычисление с примерами решения с центром в точке Множества - определение и вычисление с примерами решения, получим точку Множества - определение и вычисление с примерами решения, координата которой равна Множества - определение и вычисление с примерами решения. Кроме числа Множества - определение и вычисление с примерами решения вы также встречались с иррациональными числами Множества - определение и вычисление с примерами решения и т. д.

Рациональные и иррациональные числа составляют множество действительных чисел Множества - определение и вычисление с примерами решения. На координатной прямой каждому действительному числу соответствует единственная точка и, наоборот, каждой точке координатной прямой соответствует единственное действительное число (в этом случае говорят, что между множеством действительных чисел и множеством точек координатной прямой устанавливается взаимно однозначное соответствие).

Каждое действительное число может быть записано в виде бесконечной десятичной дроби: рациональные числа — в виде бесконечной периодической десятичной дроби, а иррациональные — в виде бесконечной непериодической десятичной дроби.

Напомним, что для сравнения действительных чисел и выполнения действий над ними (в случае, когда хотя бы одно из них не является рациональным) используются приближенные значения этих чисел. В частности, для сравнения двух действительных чисел последовательно рассматриваем их приближенные значения с недостатком с точностью до целых, десятых, сотых и т. д. до тех пор, пока не получим, что какое-то приближенное значение одного числа больше соответствующего приближенного значения второго. Тогда то число, у которого приближенное значение больше, и считается большим. Например, если

Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения (поскольку Множества - определение и вычисление с примерами решения).

Для выполнения сложения или умножения рассмотренных чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения последовательно записывают их приближенные значения с недостатком и с избытком (с точностью до целых, десятых, сотых и т. д.) и выполняют действия над полученными рациональными числами. В результате последовательно получаем значение суммы или произведения с необходимой точностью.

Множества - определение и вычисление с примерами решения

Как видим, Множества - определение и вычисление с примерами решения

В курсе математического анализа доказывается, что в случае, когда приближенные значения чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения последовательно берутся с точностью до целых, десятых, сотых и т. д., то значения суммы Множества - определение и вычисление с примерами решения с недостатком и с избытком стремятся к одному и тому же числу, которое и принимается за значение суммы Множества - определение и вычисление с примерами решения (аналогично определяется и произведение Множества - определение и вычисление с примерами решения).

Модуль действительного числа и его свойства

Напомним определение модуля.

Модулем положительного числа называется само это число, модулем отрицательного числа — число, противоположное ему, модуль нуля равен нулю.

Это определение можно коротко записать несколькими способами. а при а > 0,

Множества - определение и вычисление с примерами решения, или Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения или

Множества - определение и вычисление с примерами решения

При необходимости мы будем пользоваться любой из этих записей определения модуля. Для нахождения Множества - определение и вычисление с примерами решения по определению необходимо знать знак числа Множества - определение и вычисление с примерами решения и использовать соответствующую формулу. Например, Множества - определение и вычисление с примерами решения

На координатной прямой модуль числа — это расстояние от начала координат до точки, изображающей это число.

Множества - определение и вычисление с примерами решения

Действительно, если Множества - определение и вычисление с примерами решения (рис. 11), то расстояние Множества - определение и вычисление с примерами решения

Если Множества - определение и вычисление с примерами решения, то расстояние Множества - определение и вычисление с примерами решения

Модуль разности двух чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — это расстояние между точками Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения на координатной прямой.

Для доказательства можно воспользоваться тем, что при параллельном переносе вдоль оси координат на Множества - определение и вычисление с примерами решения единиц абсцисса соответствующей точки изменяется на Множества - определение и вычисление с примерами решения: к абсциссе данной точки прибавляется число Множества - определение и вычисление с примерами решения, то есть при Множества - определение и вычисление с примерами решения точка переносится вправо, а при Множества - определение и вычисление с примерами решения — влево. Обозначим на координатной прямой числа Множества - определение и вычисление с примерами решения соответственно точками Множества - определение и вычисление с примерами решения. На рисунке 12 эти точки изображены для случая Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения, хотя приведенное далее обоснование не зависит от знаков Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения.

Множества - определение и вычисление с примерами решения

При параллельном переносе вдоль оси Множества - определение и вычисление с примерами решения на Множества - определение и вычисление с примерами решения единиц точка Множества - определение и вычисление с примерами решения перейдет в точку Множества - определение и вычисление с примерами решения, а точка Множества - определение и вычисление с примерами решения (с координатой Множества - определение и вычисление с примерами решения) — в точку с координатой Множества - определение и вычисление с примерами решения, то есть в точку Множества - определение и вычисление с примерами решения. Тогда Множества - определение и вычисление с примерами решения. Но расстояние Множества - определение и вычисление с примерами решения — это расстояние от точки Множества - определение и вычисление с примерами решения до начала координат, следовательно, Множества - определение и вычисление с примерами решения, а значит, и Множества - определение и вычисление с примерами решения.

Используя определение модуля и его геометрический смысл, можно обосновать свойства модуля, приведенные в таблице 2.

Например, учитывая, что Множества - определение и вычисление с примерами решения — это расстояние от точки Множества - определение и вычисление с примерами решения до точки Множества - определение и вычисление с примерами решения, а расстояние может выражаться только неотрицательным числом, получаем

Множества - определение и вычисление с примерами решения

то есть модуль любого числа является неотрицательным числом.

Учитывая, что точки Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения находятся на одинаковом расстоянии от точки Множества - определение и вычисление с примерами решения, получаем

Множества - определение и вычисление с примерами решения

это означает, что модули противоположных чисел равны.

Если Множества - определение и вычисление с примерами решения то Множества - определение и вычисление с примерами решения а если Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения. Следовательно, всегда

Множества - определение и вычисление с примерами решения

то есть каждое число не превышает его модуль.

Если в последнее неравенство вместо Множества - определение и вычисление с примерами решения подставить Множества - определение и вычисление с примерами решения и учесть, что Множества - определение и вычисление с примерами решения, то получаем неравенство Множества - определение и вычисление с примерами решения. Отсюда Множества - определение и вычисление с примерами решения, что вместе с неравенством Множества - определение и вычисление с примерами решения свидетельствует о том, что для любого действительного числа а выполняется двойное неравенство

Множества - определение и вычисление с примерами решения (1)

При Множества - определение и вычисление с примерами решения неравенство Множества - определение и вычисление с примерами решения означает, что число Множества - определение и вычисление с примерами решения на координатной прямой находится от точки Множества - определение и вычисление с примерами решения на расстоянии, которое не превышает Множества - определение и вычисление с примерами решения (рис. 13), то есть в промежутке Множества - определение и вычисление с примерами решения. Наоборот, если число Множества - определение и вычисление с примерами решения находится в этом промежутке, то есть Множества - определение и вычисление с примерами решения. Следовательно,

при Множества - определение и вычисление с примерами решения (2)

Обратим внимание, что последнее утверждение справедливо и при Множества - определение и вычисление с примерами решения (тогда двум неравенствам удовлетворяет только одно значение Множества - определение и вычисление с примерами решения).

Аналогично при Множества - определение и вычисление с примерами решения неравенство Множества - определение и вычисление с примерами решения означает, что число Множества - определение и вычисление с примерами решения на координатной прямой находится от точки Множества - определение и вычисление с примерами решения на расстоянии, которое больше или равно Множества - определение и вычисление с примерами решения (рис. 13),

Множества - определение и вычисление с примерами решения

то есть в этом случае Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения. Наоборот, если число Множества - определение и вычисление с примерами решения удовлетворяет одному из этих неравенств, то Множества - определение и вычисление с примерами решения. Следовательно, при Множества - определение и вычисление с примерами решения неравенство Множества - определение и вычисление с примерами решения равносильно совокупности неравенств Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения, что можно записать так:

при Множества - определение и вычисление с примерами решения

Свойства модуля произведения и модуля дроби фиксируют известные правила действий над числами с одинаковыми и разными знаками:

модуль произведения равен произведению модулей множителей, то есть

Множества - определение и вычисление с примерами решения

модуль дроби равен модулю числителя, деленному на модуль знаменателя (если знаменатель не равен нулю), то есть

Множества - определение и вычисление с примерами решения

Формулу для нахождения модуля произведения можно обобщить для случая нескольких множителей

Множества - определение и вычисление с примерами решения (3)

Если в формуле (3) взять Множества - определение и вычисление с примерами решения, получаем формулу

Множества - определение и вычисление с примерами решения

Используя последнюю формулу справа налево при Множества - определение и вычисление с примерами решения и учитывая, что Множества - определение и вычисление с примерами решения при всех значениях Множества - определение и вычисление с примерами решения, получаем Множества - определение и вычисление с примерами решения. Следовательно,

Множества - определение и вычисление с примерами решения. Для обоснования неравенства

Множества - определение и вычисление с примерами решения (4)

запишем неравенство (1) для чисел Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения:

Множества - определение и вычисление с примерами решения

Складывая почленно эти неравенства, получаем

Множества - определение и вычисление с примерами решения

Учитывая неравенство (2), имеем

Множества - определение и вычисление с примерами решения (5)

то есть модуль суммы не превышает суммы модулей слагаемых. Если в неравенстве (4) заменить Множества - определение и вычисление с примерами решения на Множества - определение и вычисление с примерами решения и учесть, что Множества - определение и вычисление с примерами решения, то получим неравенство

Множества - определение и вычисление с примерами решения

Если записать число Множества - определение и вычисление с примерами решения так: Множества - определение и вычисление с примерами решения и использовать неравенство (4), то получим неравенство Множества - определение и вычисление с примерами решения. Отсюда

Множества - определение и вычисление с примерами решения (6)

Если в неравенстве (6) заменить Множества - определение и вычисление с примерами решения на Множества - определение и вычисление с примерами решения и учесть, что Множества - определение и вычисление с примерами решения, то получим неравенство

Множества - определение и вычисление с примерами решения (7)

то есть модуль суммы двух чисел не меньше разности их модулей.

Меняя местами буквы Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения в неравенствах (6) и (7) и учитывая, что Множества - определение и вычисление с примерами решения, имеем также неравенства

Множества - определение и вычисление с примерами решения (8)

Полученные неравенства (4)-(8) можно коротко записать так:

Множества - определение и вычисление с примерами решения

Примеры решения задач:

Пример №402

Докажите, что сумма, разность, произведение, натуральная степень и частное (если делитель не равен нулю) двух рациональных чисел всегда является рациональным числом.

Решение:

► Пусть заданы два рациональных числа Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения где Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — целые, а Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — натуральные числа. Поскольку сумма, разность, произведение, натуральная степень и частное двух обыкновенных дробей всегда являются обыкновенными дробями, то полученный результат всегда будет рациональным числом. Например,

Множества - определение и вычисление с примерами решения

где Множества - определение и вычисление с примерами решения — целое число, а Множества - определение и вычисление с примерами решения — натуральное.

Комментарий:

Любое рациональное число может быть записано как дробь Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения — целое, Множества - определение и вычисление с примерами решения — натуральное число.

Чтобы доказать утверждение задачи, достаточно доказать, что сумма, разность, произведение и частное двух дробей вида Множества - определение и вычисление с примерами решения также будет дробью такого вида.

Пример №403

Докажите, что для любого натурального числа Множества - определение и вычисление с примерами решения число Множества - определение и вычисление с примерами решения или натуральное, или иррациональное.

Комментарий:

Для доказательства утверждения задачи можно использовать метод от противного: предположить, что заданное положительное число является рациональным ненатуральным (то есть дробью), и получить противоречие с условием или с каким-либо известным фактом.

Записывая Множества - определение и вычисление с примерами решения в виде несократимой дроби, следует учесть, что при натуральных значениях Множества - определение и вычисление с примерами решения это число всегда будет положительным.

Решение:

► Допустим, что Множества - определение и вычисление с примерами решения не является иррациональным числом (тогда это число рациональное) и не является натуральным числом. Следовательно, это число может быть только рациональной несократимой дробью Множества - определение и вычисление с примерами решения, где Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — натуральные числа Множества - определение и вычисление с примерами решения. По определению квадратного корня имеем Множества - определение и вычисление с примерами решения то есть Множества - определение и вычисление с примерами решения. Учитывая, что Множества - определение и вычисление с примерами решения, получаем, что дробь Множества - определение и вычисление с примерами решения, равная натуральному числу Множества - определение и вычисление с примерами решения, должна быть сократимой.

Следовательно, у натуральных множителей, которые стоят в числителе и знаменателе этой дроби, должен быть общий натуральный делитель, отличный от 1. Но в числителе стоят только множители Множества - определение и вычисление с примерами решения, а в знаменателе — только множители Множества - определение и вычисление с примерами решения. Тогда числа Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения имеют натуральный делитель, отличный от 1, то есть дробь является сократимой дробью, что противоречит условию. Таким образом, наше предположение неверно, и для любого натурального числа Множества - определение и вычисление с примерами решения число Множества - определение и вычисление с примерами решения или натуральное, или иррациональное.

Например, поскольку числа Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения не являются натуральными числами Множества - определение и вычисление с примерами решения, то Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения — иррациональные числа.

Пример №404

Докажите, что Множества - определение и вычисление с примерами решения — число иррациональное.

Решение:

► Допустим, что число Множества - определение и вычисление с примерами решения рациональное. Тогда Множества - определение и вычисление с примерами решения Возведя обе части последнего равенства в квадрат, имеем Множества - определение и вычисление с примерами решения Отсюда Множества - определение и вычисление с примерами решения

Следовательно, Множества - определение и вычисление с примерами решения

Но правая часть этого равенства — рациональное число (поскольку по предположению Множества - определение и вычисление с примерами решения — рациональное число), а левая — иррациональное. Полученное противоречие означает, что наше предположение неверно и число Множества - определение и вычисление с примерами решенияМножества - определение и вычисление с примерами решения — иррациональное.

Комментарий:

Для доказательства утверждения задачи можно использовать метод «от противного» — допустить, что заданное число является рациональным, и получить противоречие с каким-либо известным фактом, например с тем, что Множества - определение и вычисление с примерами решения — иррациональное число.

При анализе полученных выражений используем результат задачи 1: если число Множества - определение и вычисление с примерами решения — рациональное, то числа Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения и их частное тоже будут рациональными.

Заметим, что знаменатель полученной дроби Множества - определение и вычисление с примерами решения

Пример №405

Решите уравнениеМножества - определение и вычисление с примерами решения

Решение

I способ

Множества - определение и вычисление с примерами решения

Ответ: Множества - определение и вычисление с примерами решения

Комментарий:

Заданное уравнение имеет вид Множества - определение и вычисление с примерами решения (в данном случае Множества - определение и вычисление с примерами решения). Его удобно решать, используя геометрический смысл модуля: Множества - определение и вычисление с примерами решения— это расстояние от точки 0 до точки Множества - определение и вычисление с примерами решения. Но расстояние 7 может быть отложено от 0 как вправо (получаем число 7), так и влево (получаем число -7). Следовательно, равенство Множества - определение и вычисление с примерами решения возможно тогда и только тогда, когда Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения.

II способ

Множества - определение и вычисление с примерами решения

Ответ: Множества - определение и вычисление с примерами решения

Комментарий:

С геометрической точки зрения Множества - определение и вычисление с примерами решения — это расстояние между точками Множества - определение и вычисление с примерами решения и Множества - определение и вычисление с примерами решения на координатной прямой. Запишем данное уравнение так: Множества - определение и вычисление с примерами решения. Тогда равенство Множества - определение и вычисление с примерами решения означает, что расстояние от точки Множества - определение и вычисление с примерами решения до точки -5 равно 7. На расстоянии 7 от точки -5 находятся точки 2 и -12 (рис. 14). Таким образом, данное равенство выполняется тогда и только тогда, когда Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения то есть данное уравнение равносильно указанной в решении совокупности уравнений.

Пример №406

Решите неравенство Множества - определение и вычисление с примерами решения

Решение:

Множества - определение и вычисление с примерами решения

Решая эти неравенства (рис. 15), получаем

Множества - определение и вычисление с примерами решения

Множества - определение и вычисление с примерами решения

Следовательно, Множества - определение и вычисление с примерами решения или Множества - определение и вычисление с примерами решения

Ответ: Множества - определение и вычисление с примерами решения

Комментарий:

Заданное неравенство имеет вид Множества - определение и вычисление с примерами решения (в данном случае Множества - определение и вычисление с примерами решения), и его можно решать, используя геометрический смысл модуля. С геометрической точки зрения, Множества - определение и вычисление с примерами решения — это расстояние от точки 0 до точки Множества - определение и вычисление с примерами решения. На расстоянии 6 от 0 находятся числа 6 и -6.

Тогда неравенству Множества - определение и вычисление с примерами решения удовлетворяют все те и только те точки, которые находятся в промежутке Множества - определение и вычисление с примерами решения то есть Множества - определение и вычисление с примерами решения Для решения полученного двойного неравенства его удобно заменить соответствующей системой.

  • Рациональные уравнения
  • Рациональные неравенства и их системы
  • Геометрические задачи и методы их решения
  • Прямые и плоскости в пространстве
  • Функции, их свойства и графики
  • Параллельность в пространстве
  • Перпендикулярность в пространстве
  • Векторы и координаты в пространстве

Из большого количества разнообразных множеств особо интересными и важными являются числовые множества, т.е. те множества, элементами которых служат числа. Очевидно, что для работы с числовыми множествами необходимо иметь навык записи их, а также изображения их на координатной прямой.

Запись числовых множеств

Общепринятым обозначением любых множеств являются заглавные буквы латиницы. Числовые множества – не исключение. К примеру, мы можем говорить о числовых множествах B, F или S и т.п. Однако есть также общепринятая маркировка числовых множеств в зависимости от входящих в него элементов:

N – множество всех натуральных чисел; Z – множество целых чисел; Q – множество рациональных чисел; J – множество иррациональных чисел; R – множество действительных чисел; C – множество комплексных чисел.

Становится понятным, что обозначение, например, множества, состоящего из двух чисел: -3, 8 буквой J может ввести в заблуждение, поскольку этой буквой маркируется множество иррациональных чисел. Поэтому для обозначения множества -3, 8 более подходящим будет использование какой-то нейтральной буквы: A или B, например.

Напомним также следующие обозначения:

  • ∅ – пустое множество или множество, не имеющее составных элементов;
  • ∈ или ∉ — знак принадлежности или непринадлежности элемента множеству. Например, запись 5 ∈ N обозначает, что число 5 является частью множества всех натуральных чисел. Запись -7,1 ∈ Z отражает тот факт, что число -7,1 не является элементом множества Z, т.к. Z– множество целых чисел;
  • знаки принадлежности множества множеству:
    ⊂ или ⊃ — знаки «включено» или «включает» соответственно. Например, запись A⊂Z означает, что все элементы множества А входят в множество Z, т.е. числовое множество A включено в множество Z. Или наоборот, запись Z⊃A пояснит, что множество всех целых чисел Z включает множество A.
    ⊆ или ⊇ — знаки так называемого нестрогого включения. Означают «включено или совпадает» и «включает или совпадает» соответственно.

Рассмотрим теперь схему описания числовых множеств на примере основных стандартных случаев, наиболее часто используемых на практике.

Первыми рассмотрим числовые множества, содержащие конечное и небольшое количество элементов. Описание подобного множества удобно составлять, просто перечисляя все его элементы. Элементы в виде чисел записываются, разделяясь запятой, и заключаются в фигурные скобки (что соответствует общим правилам описания множеств). К примеру, множество из чисел 8, -17, 0,15 запишем как {8, -17, 0,15}.

Случается, что количество элементов множества достаточно велико, но все они подчиняются определенной закономерности: тогда в описании множества используют многоточие. К примеру, множество всех четных чисел от 2 до 88 запишем как: {2, 4, 6, 8, …, 88}.

Теперь поговорим об описании числовых множеств, в которых количество элементов бесконечно. Иногда их описывают при помощи того же многоточия. Например, множество всех натуральных чисел запишем так: N = {1, 2, 3, …}.

Также возможно записать числовое множество с бесконечным количеством элементов при помощи указания свойств его элементов. Применяют при этом обозначение {х| свойства}. К примеру, {n| 8·n + 3, n∈N} определяет множество натуральных чисел, которые при делении на 8 дадут остаток 3. Это же множество возможно записать как: {11, 19, 27, …}.

В частных случаях числовые множества с бесконечным количеством элементов – это общеизвестные множества N, Z, R и т.д., либо числовые промежутки. Но в основном числовые множества представляют собой объединение составляющих их числовых промежутков и числовых множеств с конечным количеством элементов (о них мы говорили в самом начале статьи).

Рассмотрим на примере. Допустим, составляющими некого числового множества являются числа -15, -8, -7,34, 0, а также все числа отрезка [-6, -1,2] и числа открытого числового луча (6, +∞). В соответствии с определением объединения множеств заданное числовое множество запишем как: {-15, -8, -7,34}∪[-6, -1,2]∪{0}∪(6, +∞). Подобная запись фактически означает множество, включающее в себя все элементы множеств {-15, -8, -7,34, 0}, [-6, -1,2] и (6, +∞).

Таким же образом, объединяя различные числовые промежутки и множества отдельных чисел, возможно дать описание любому числовому множеству, состоящему из действительных чисел. На основе сказанного становится понятно, для чего вводятся различные виды числовых промежутков, такие как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч. Все эти виды промежутков совместно с обозначениями множеств отдельных чисел дают возможность через их объединение описать любое числовое множество.

Необходимо также обратить внимание на то, что отдельные числа и числовые промежутки при записи множества могут быть упорядочены по возрастанию. В общем, это не является обязательным требованием, однако подобное упорядочивание позволяет представить числовое множество проще, а также верно отобразить его на координатной прямой. Также стоит уточнить, что в таких записях не применяют числовые промежутки с общими элементами, поскольку эти записи возможно заменить объединением числовых промежутков, исключив общие элементы. К примеру, объединением числовых множеств с общими элементами [-15, 0] и (-6,4) будет полуинтервал [-15, 4). То же имеет отношение и к объединению числовых промежутков с одинаковыми граничными числами. Например, объединение (4, 7]∪(7, 9] является множеством (4, 9]. Этот пункт подробно будет рассмотрен в теме нахождения пересечения и объединения числовых множеств.

Изображение числовых множеств на координатной прямой

В практических примерах удобно использовать геометрическое толкование числовых множеств – их изображение на координатной прямой. К примеру, такой способ поможет при решении неравенств, в которых нужно учесть ОДЗ – когда нужно отобразить числовые множества, чтобы определить их объединение и/или пересечение.

Мы знаем, что между точками координатной прямой и действительными числами имеется однозначное соответствие: вся координатная прямая есть геометрическая модель множества всех действительных чисел R. Следовательно, для изображения множества всех действительных чисел начертим координатную прямую и нанесем штриховку на всем ее протяжении:

Изображение числовых множеств на координатной прямой

Зачастую и не указывают начало отсчета и единичный отрезок:

Изображение числовых множеств на координатной прямой

Рассмотрим изображение числовых множеств, состоящих из конечного количества отдельных чисел. К примеру, отобразим числовое множество {-2, -0,5, 1,2}. Геометрической моделью заданного множества станут три точки координатной прямой с соответствующими координатами:

Изображение числовых множеств на координатной прямой

В большинстве случаев возможно не соблюдать абсолютную точность чертежа: вполне достаточно схематичного изображения без соблюдения масштаба, но с сохранением взаимного расположения точек относительно друг друга, т.е. любая точка с бОльшей координатой должна быть правее точки с меньшей. С учётом сказанного уже имеющийся чертеж может выглядеть так:

Изображение числовых множеств на координатной прямой

Отдельно из возможных числовых множеств выделяют числовые промежутки интервалы, полуинтервалы, лучи и пр.)

Теперь рассмотрим принцип изображения числовых множеств, являющихся объединением нескольких числовых промежутков и множеств, состоящих их отдельных чисел. В этом нет никакой сложности: согласно определению объединения на координатной прямой необходимо отобразить все составляющие множества заданного числового множества. Например, создадим иллюстрацию числового множества (-∞, -15)∪{-10}∪[-3, 1)∪{log25, 5}∪(17, +∞).

Изображение числовых множеств на координатной прямой

Также довольно распространены случаи, когда числовое множество, которое необходимо изобразить, включает в себя все множество действительных чисел кроме одной или нескольких точек. Подобные множества часто задаются условиями вроде х ≠ 5 или х ≠ -1 и т.п. В таких случаях множества в своей геометрической модели являются всей координатной прямой за исключением заданных точек. Общепринято говорить, что эти точки необходимо «выколоть» из координатной прямой. Изображается выколотая точка кружочком с пустым центром. Чтобы подкрепить сказанное практическим примером, отобразим на координатной прямой множество с заданным условием х ≠ -2 и х ≠ 3:

Изображение числовых множеств на координатной прямой

Информация, приведенная в данной статье, призвана помочь получить навык видеть запись и изображение числовых множеств так же легко, как и отдельных числовых промежутков. В идеале записанное числовое множество сразу должно представляться в виде геометрического образа на координатной прямой. И наоборот: по изображению должно с легкостью формироваться соответствующее числовое множество через объединение числовых промежутков и множеств, являющихся отдельными числами.

Мно́жество — один из ключевых объектов математики, в частности, теории множеств. «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном смысле логическим определением понятия множество, а всего лишь пояснением (ибо определить понятие — значит найти такое родовое понятие, в которое данное понятие входит в качестве вида, но множество — это, пожалуй, самое широкое понятие математики и логики).

В математической логике и дискретной математике часто употребляемый синоним множества — алфавит.

Содержание

  • 1 Теории
    • 1.1 «Наивная теория множеств»
      • 1.1.1 История определения
    • 1.2 Аксиоматическая теория множеств
  • 2 Элемент множества
  • 3 Некоторые виды множеств
  • 4 Операции над множествами
  • 5 Литература
  • 6 См. также

Теории

Существует два основных подхода к понятию множества — наивная и аксиоматическая теория множеств.

«Наивная теория множеств»

Дать определение какому-нибудь понятию — это значит описать это понятие через понятия, определённые ранее. Если число определений в теории конечно, то первое определение должно быть основано на понятиях, которые являются аксиоматическими, то есть изначально неопределёнными. Множество — как раз одно из таких аксиоматических понятий. В рамках наивной теории множеств множеством считается любой чётко определённый набор объектов (элементов множества). Вольное использование наивной теории множеств приводит к некоторым парадоксам, возникающим из-за того, что интуитивное понятие «чётко определённый» на самом деле само не определено чётко. Так как теория множеств, фактически, используется как основание и язык всех современных математических теорий, становится очевидной необходимость её строгой аксиоматизации.

Наивная теория множеств была создана Кантором в конце XIX века.

История определения

До XIX века считалось, что точного определения множества нет. Множеством считалось любое скопление предметов.

В конце XIX века Георг Кантор определил множество как «единое имя для совокупности всех объектов, обладающих данным свойством». Эти объекты называются элементами множества. Множество объектов, обладающих свойством A(x), обозначается {xmid A(x)}. Если некое множество Y={xmid A(x)}, то A(x) называется характеристическим свойством множества Y.

Эта концепция привела к парадоксам, в частности, к парадоксу Рассела.

После этого теория множеств была аксиоматизирована.

Аксиоматическая теория множеств

На сегодняшний день множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело — Френкеля с аксиомой выбора). При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами. Такие совокупности называются классами (различных порядков).

Элемент множества

Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают большими буквами латинского алфавита, его элементы — маленькими. Если а — элемент множества А, то записывают а ∈ А (а принадлежит А). Если а не является элементом множества А, то записывают а∉А(а не принадлежит А).

Некоторые виды множеств

  • Пустое множество
  • Упорядоченное множество — множество, на котором задано отношение порядка.
  • Набор (в частности, упорядоченная пара). В отличие от просто множества записывается внутри круглых скобок: (x1, x2, x3, …), а элементы могут повторяться.

По иерархии:

Множество множеств
Подмножество
Надмножество

По ограничению:

Операции над множествами

Литература

  • Столл Р. Р. Множества. Логика. Аксиоматические теории. — М.: Просвещение, 1968. — 232 с.

См. также

  • Круги Эйлера
  • Носитель

Wikimedia Foundation.
2010.

Множество — одно из наиболее важных понятий математики. На этом уроке мы расскажем, что это такое, разберём, что такое элементы множества, конечные и бесконечные множества и другие термины, связанные с понятием множества.

Когда мы говорим о множестве, мы подразумеваем набор связанных друг с другом объектов. Такие объекты называют элементами этого множества.

И если твой класс – это множество, тогда ученики класса – элементы множества.

Для записи множества используют фигурные скобки. Попробуем записать множество цветов радуги:

${$ Красный, оранжевый, желтый, зелёный, голубой, синий, фиолетовый $}$

Конечные и бесконечные множества. Обозначения множеств

Множества могут быть конечными и бесконечными. Например, множество парт в классе, множество пальцев на руке, множество стран мира – конечные, а множество натуральных чисел, множество прямоугольников – бесконечные множества.

Если элементами множества являются числа, то такое множество мы называем числовым.

Например, ${1,3,5,7,9}$ – множество нечётных чисел, ${1,2,3,4,5}$ – множество натуральных чисел, меньших  числа $6$.

Все элементы множества должны отличаться друг от друга. В числовом множестве не может быть повторяющихся чисел.

Чтобы множества было легко отличить друг от друга, их обозначают прописными буквами латинского алфавита: $$A={1,2,3,4,5}$$

Принадлежность к множеству. Пустое множество

Каждое из чисел $1, 2, 3, 4, 5$ принадлежит множеству $A$. Слово «принадлежит» заменяют знаком $in$. Выглядит это так: $1 in A$ (число $1$ принадлежит множеству $A$).

Другие числа ему не принадлежат. Вместо слов «не принадлежит» используют знак $notin$. Записать можно так: $6 notin А$ (число $6$ не принадлежит множеству $А$).

Множество натуральных чисел $M$, меньших числа $2$, состоит всего из одного элемента: $$M={1}$$

А множество натуральных чисел $N$, меньших числа $1$, не содержит ни одного элемента.

Множество, в котором не содержится ни одного элемента, называется пустым множеством и обозначают знаком $varnothing$.

Множество $N$ – пустое. $$N=varnothing$$

Объединение и пересечение множеств

Рассмотрим множество учеников класса. Пять учеников ходят в шахматный кружок, а восемь учеников занимаются футболом, при этом в классе всего десять учеников. Как же так получилось? Просто трое ходят и на шахматы, и на футбол.

Обозначим множество учеников, которые ходят в шахматный кружок, буквой $A$, а множество учеников, занимающихся футболом, буквой $B$

Тогда множество всех учеников класса – объединение множеств $A$ и $B$

Объединение множеств

А множество учеников, которые ходят и на шахматы, и на футбол – общая часть (пересечение) множеств $A$ и $B$

Пересечение множеств

Чтобы обозначить объединение множеств, в математике используют знак $cup$: $$A cup B$$

Для обозначения общей части (пересечения) множеств используют знак $cap$: $$A cap B$$

Пример. Объединение и пересечение двух числовых множеств

Давай рассмотрим два множества:

$А={22,23,24,25,26}$

$B={21,23,25,27}$

И вместе попробуем найти $A cup B$ и $A cap B$.

Для начала запишем объединение этих множеств, то есть все числа, которые входят в эти множества: $$A cup B={21,22,23,24,25,26,27}$$

Обрати внимание, что даже если число есть одновременно в двух множествах, как, например, 23, мы записываем его только один раз, так как в множестве не должно быть одинаковых элементов.

Теперь определим их пересечение (общую часть): $$A cap B={23,25}$$

Подмножество

Посмотри на рисунок. Какие множества на нем ты видишь? 

Давай назовём множество треугольников буквой $A$: $$A={m,n,p}$$

Множество А

A множество прямоугольников буквой $B$: $$B={k,o}$$

Множество B

Тогда множество $A cup B$ – множество всех фигур на картинке, то есть $$A cup B={m,n,p,k,o}$$

Теперь обозначим множество зелёных фигур буквой $C$: $$C={m,n,o}$$

Множество С

Что представляет собой множество $Acap C$?
$Acap C$ – множество зелёных треугольников $D$, то есть $D={m,n}$

Множество D

Обозначим буквой $E$ множество голубых фигур: $$E={k}$$ Давай определим, что является множеством пересечения $Acap E$? У множеств $A$ (треугольники) и $E$ (голубые фигуры) нет общих элементов, а значит они не пересекаются. $$Acap E=varnothing$$

Множество зелёных треугольников $D$ является частью множества всех треугольников $A$. Можно записать так:

$D subset A$
(здесь $subset$ – знак включения)

В таком случае говорят, что множество $D$ – подмножество множества $A$.

Если одно множество является частью другого множества, то его называют подмножеством.

Принято считать, что пустое множество является подмножеством любого множества:$$varnothingsubset A$$

А также само множество является своим подмножеством: $$Asubset A$$

Множество — это набор каких-либо объектов. Объекты, из которых состоит множество, называются элементами этого множества.

Например: множество школьников, множество машин, множество чисел.

В математике множество рассматривается намного шире. Мы не будем сильно углубляться в эту тему, поскольку она относится к высшей математике и на первых порах может создавать трудности для обучения. Мы рассмотрим только ту часть темы, с которой уже имели дело.

Обозначения

Множество чаще всего обозначают заглавными буквами латинского алфавита, а его элементы — строчными. При этом элементы заключаются в фигурные скобки.

Например, если наших друзей зовут Том, Джон и Лео, то мы можем задать множество друзей, элементами которого будут Том, Джон и Лео.

Обозначим множество наших друзей через заглавную латинскую букву F (friends), затем поставим знак равенства и в фигурных скобках перечислим наших друзей:

F = { Том, Джон, Лео }


Пример 2. Запишем множество делителей числа 6.

Обозначим через любую заглавную латинскую букву данное множество, например, через букву D

D

затем поставим знак равенства и в фигурных скобках перечислим элементы данного множества, то есть перечислим делители числа 6

D = { 1, 2, 3, 6 }

Если какой-то элемент принадлежит заданному множеству, то эта принадлежность указывается с помощью знака принадлежности . К примеру, делитель 2 принадлежит множеству делителей числа 6 (множеству D). Записывается это так:

2 ∈ D

Читается как «2 принадлежит множеству делителей числа 6»

Если какой-то элемент не принадлежит заданному множеству, то эта не принадлежность указывается с помощью зачёркнутого знака принадлежности . К примеру, делитель 5 не принадлежит множеству D. Записывается это так:

5 ∉ D

Читается как «5 не принадлежит множеству делителей числа

Кроме того, множество можно записывать прямым перечислением элементов, без заглавных букв. Это может быть удобным, если множество состоит из небольшого количества элементов. Например, зададим множество из одного элемента. Пусть этим элементом будет наш друг Том:

{ Том }

Зададим множество, которое состоит из одного числа 2

{ 2 }

Зададим множество, которое состоит из двух чисел: 2 и 5

{ 2, 5 }


Множество натуральных чисел

Это первое множество с которым мы начали работать. Натуральными числами называют числа 1, 2, 3 и т.д.

Натуральные числа появились из-за потребности людей сосчитать те иные объекты. Например, посчитать количество кур, коров, лошадей. Натуральные числа возникают естественным образом при счёте.

В прошлых уроках, когда мы употребляли слово «число», чаще всего подразумевалось именно натуральное число.

В математике множество натуральных чисел обозначается заглавной латинской буквой N.

Например, укажем, что число 1 принадлежит множеству натуральных чисел. Для этого записываем  число 1, затем с помощью знака принадлежности ∈ указываем, что единица принадлежит множеству N

1 ∈ N

Читается как: «единица принадлежит множеству натуральных чисел»


Множество целых чисел

Множество целых чисел включает в себя все положительные и отрицательные числа, а также число 0.

Множество целых чисел обозначается заглавной латинской буквой Z.

Укажем, к примеру, что число −5 принадлежит множеству целых чисел:

−5 ∈ Z

Укажем, что 10 принадлежит множеству целых чисел:

10 ∈ Z

Укажем, что 0 принадлежит множеству целых чисел:

0 ∈ Z

В будущем все положительные и отрицательные числа мы будем называть одним словосочетанием — целые числа.


Множество рациональных чисел

Рациональные числа, это те самые обыкновенные дроби, которые мы изучаем по сей день.

Рациональное число — это число, которое может быть представлено в виде дроби a разделить на b , где a — числитель дроби, b — знаменатель.

В роли числителя и знаменателя могут быть любые числа, в том числе и целые (за исключением нуля, поскольку на нуль делить нельзя).

Например, представим, что вместо a стоит число 10, а вместо b — число 2

mnojestva3

10 разделить на 2 равно 5. Видим, что число 5 может быть представлено в виде дроби mnojestva8, а значит число 5 входит во множество рациональных чисел.

Легко заметить, что число 5 также относится и ко множеству целых чисел. Стало быть множество целых чисел входит во множество рациональных чисел. А значит, во множество рациональных чисел входят не только обыкновенные дроби, но и целые числа вида −2, −1, 0, 1, 2.

Теперь представим, что вместо a стоит число 12, а вместо b — число 5.

mnojestva4

12 разделить на 5 равно 2,4. Видим, что десятичная дробь 2,4 может быть представлена в виде дроби mnojestva5, а значит она входит во множество рациональных чисел. Отсюда делаем вывод, что во множество рациональных чисел входят не только обыкновенные дроби и целые числа, но и десятичные дроби.

Мы вычислили дробь  mnojestva5  и получили ответ 2,4. Но мы могли бы выделить в этой дроби целую часть:

mnojestva6

При выделении целой части в дроби mnojestva5, получается смешанное число mnojestva7 . Видим, что смешанное число mnojestva7 тоже может быть представлено в виде дроби mnojestva5.  Значит во множество рациональных чисел входят и смешанные числа.

В итоге мы приходим к выводу, что множество рациональных чисел содержат в себе:

  • целые числа
  • обыкновенные дроби
  • десятичные дроби
  • смешанные числа

Множество рациональных чисел обозначается заглавной латинской буквой Q.

Например укажем, что дробь 23213 принадлежит множеству рациональных чисел. Для этого записываем саму дробь 23213, затем с помощью знака принадлежности ∈ указываем, что дробь 23213 принадлежит множеству рациональных чисел:

23213Q

Укажем, что десятичная дробь 4,5 принадлежит множеству рациональных чисел:

4,5 ∈ Q

Укажем, что смешанное число 1676  принадлежит множеству рациональных чисел:

1676 ∈ Q

Вводный урок по множествам завершён. В будущем мы рассмотрим множества намного лучше, а пока рассмотренного в данном уроке будет достаточно.


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже



Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Много удач как пишется
  • Много тысяч как пишется
  • Много туфлей как правильно пишется
  • Мое любимое аниме сочинение
  • Мое личное отношение к базарову сочинение

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии